- Энергосбережение
- Основные технические направления и способы энергосбереженияПравить
- Архитектурное решениеПравить
- Конструктивные решенияПравить
- Инженерные решенияПравить
- Опыт строительства энергосберегающих зданийПравить
- Экономия электрической энергииПравить
- ЭлектроплитыПравить
- ЭлектрообогревПравить
- Холодильные установки и кондиционированиеПравить
- ОсвещениеПравить
- Снижение потерь в электросетиПравить
- ЭлектроприводПравить
- Экономия теплаПравить
- Повышение эффективности систем теплоснабженияПравить
- Экономия водыПравить
- Экономия газаПравить
- Экономия моторного топливаПравить
- Энергосбережение в различных отраслях промышленностиПравить
- Эффективность и экономический расчетПравить
- Факторы, сдерживающие энергосбережениеПравить
- Законодательство РФ в области энергосбереженияПравить
- ЛитератураПравить
- Что такое энергопассивный дом
- Особенности строительства
- Главное — герметичность
- В России все на начальном этапе
- А как у них
Энергосбережение
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 апреля 2021 года; проверки требуют 27 правок.
Основные технические направления и способы энергосбереженияПравить
На обогрев зданий в зимний и охлаждение в летний периоды расходуется большое количество тепловой и электрической энергии. Применение комплекса грамотных решений на этапах проектирования, строительства и капитального ремонта позволяет многократно (например, в зданиях типа Пассивный дом в 10 раз) снизить самые крупные статьи расхода энергии — на отопление, горячее водоснабжение и кондиционирование.
В РФ для обозначения степени энергоэкономичности зданиям присваивают класс энергоэффективности, обозначаемый A++, A+, A, B+, B, C+, C, C-, D, E. При определении класса энергоэкономичности учитываются расходы только сравнительно дешёвой тепловой энергии в отопительный период и не учитываются расходы более дорогой электрической энергии на кондиционирование (охлаждение и обогрев) в летний и переходный периоды. Таким образом, подобная система обозначений не может объективно характеризовать общую степень энергоэффективности здания.
Архитектурное решениеПравить
Небольшой козырёк над южными окнами защищает от лучей летнего солнца и не препятствует лучам зимнего солнца
- энергоэффективная форма дома, обеспечивающая минимальную площадь наружных стен по отношению к площади пола.
- проектирование и строительство многоэтажных зданий с применением ширококорпусных планировочных решений — 16÷18 метров ширины зданий вместо 10÷12 метров;
- оптимальная площадь остекления;
- наличие тамбуров на входах;
- эффективные солнцезащитные козырьки от летнего перегрева, который ухудшает комфорт и приводит к затратам электроэнергии на кондиционирование.
Конструктивные решенияПравить
Теплоизоляция с внешней стороны здания имеет ряд преимуществ перед внутренней теплоизоляцией: значительно сглаживаются колебания температуры в помещении за счёт тепловой инерции материала внешних стен (кирпич, бетон и т. ), внешние стены играют роль аккумулятора тепловой энергии при неравномерном по времени поступлении тепла (солнечное тепло, тепло от печного отопления, электроотопление с помощью льготных ночных тарифов и т. ), улучшаются условия эксплуатации материала внешних стен и т.
Инженерные решенияПравить
- обеспечение воздухообмена с минимальными потерями тепла/прохлады в холодный/жаркий периоды года с помощью механической приточно-вытяжной системы с рекуперацией тепла.
- использование энергии внешних природных источников и окружающей дом территории, например, использование солнечной энергии для отопления и нагрева воды, использование круглогодично стабильной температуры подземного грунта для обогрева зимой и кондиционирования летом с помощью теплового насоса, который позволяет получить или отвести наружу 3-4 единицы тепловой энергии на каждую единицу затраченной электроэнергии. Ещё более экономично прямое пассивное кондиционирование без участия теплового насоса.
- обогрев с помощью тёплых водяных полов в связке с тепловым насосом. Тёплые полы по сравнению с традиционными радиаторами отопления дают более равномерный прогрев помещений и высокую степень комфорта при меньших затратах тепла.
- использование внутренних тепловыделений дома, например, нагрев воды теплом выделяемым конденсатором холодильника и внешним блоком кондиционера.
- дополнительная экономия тепловой и электрической энергии за счёт использования автоматизированной системы управления всеми техническими устройствами в здании (система «Умный дом»).
Опыт строительства энергосберегающих зданийПравить
В 2015 году компания Ruukki завершила строительство одного из первых в мире объектов коммерческой недвижимости с почти нулевым уровнем энергопотребления. Этим экспериментальным объектом стало здание исследовательского центра Университета прикладных наук Финляндии (г. Хямеенлинне).
Экономия электрической энергииПравить
Наибольшее энергопотребление из бытовых электроприборов имеют устройства, имеющие в своей конструкции нагревательные элементы (электроплиты, обогревательные приборы, электрочайники, СВЧ-печи, стиральные машины и т. ), а также другие устройства с высокой потребляемой мощностью (кондиционеры, пылесосы). Также значительное суммарное энергопотребление имеют холодильники ввиду того что они несмотря на относительно небольшую мощность работают круглосуточно и круглогодично.
При покупке электроприборов следует обращать внимание на потребляемую мощность и классы энергоэффективности.
ЭлектроплитыПравить
- использование газовых варочных плит вместо электрических там, где это возможно.
- использование более экономичного варочного оборудования: мультиварки, индукционные электроплиты, скороварки и т. п.
- использование посуды с широким плоским дном, полностью покрывающим поверхность конфорки электроплиты.
ЭлектрообогревПравить
- перевод отопления с дорогого электричества на более дешёвые виды энергии;
- замена прямого электрообогрева на обогрев с использованием тепловых насосов;
- подбор оптимальной мощности электрообогревательных устройств;
- оптимальное размещение устройств электрообогрева для снижения времени и требуемой мощности их использования;
- местный (локальный) обогрев, в том числе переносными обогревателями, направленный обогрев рефлекторами;
- использование устройств регулировки температуры, в том числе устройств автоматического включения и отключения, снижения мощности в зависимости от температуры, временных таймеров;
Холодильные установки и кондиционированиеПравить
Схема классического холодильника (холодильной установки)
Для холодильных установок и бытовых холодильников основными способами снижения потребления электроэнергии являются:
- оптимальный подбор объёма холодильной и морозильной камер при покупке;
- качественные теплоизоляция корпуса (стенок) и уплотнитель двери холодильника;
- не допускать образования наледи, инея в холодильнике, вовремя размораживать;
- не рекомендуется помещать в холодильную установку (холодильник) материалы и продукты, имеющие температуру выше температуры окружающей среды — их необходимо предварительно охладить до температуры снаружи;
- качественный отвод тепла — эффективное охлаждение теплоотводящего радиатора (эффективная вентиляция радиатора, вынос радиатора холодильника в неотапливаемое помещение либо помещение холодильника туда в холодное время года);
- не допускается ставить холодильник близко к источникам тепла и подвергать солнечным лучам.
- необходимо корректно подбирать тип кондиционирования (пассивный, испарительный, мобильный, оконный, сплит-система, VRV/VRF-система, система чиллер-фанкойл) в зависимости от климата, требуемой мощности и типа помещения;
- в сухом и жарком климате необходимо использовать более экономичные кондиционеры испарительного типа (с прямым или непрямым испарением) вместо компрессионных;
- применение пассивного кондиционирования при возможности прямого отвода тепла в подземные воду и грунт;
- при кондиционировании компрессионным кондиционером окна и двери должны быть закрыты — иначе кондиционер будет охлаждать улицу или коридор;
- чистить воздушные фильтры и теплообменники, не допускать их сильного загрязнения;
- необходимо настроить режим автоматического поддержания оптимальной температуры, не охлаждая, по возможности, комнату ниже комфортных 22—24 градусов;
- рассмотреть возможность отказа от установки и использования кондиционеров, в том числе и с эстетической точки зрения (внешние блоки кондиционеров, висящие на фасадах домов);
- теплоизоляция и солнцезащита помещения.
ОсвещениеПравить
Несмотря на активное внедрение энергосберегающих источников света, расход электроэнергии на освещение остаётся значительным. Применение более энергоэффективных источников света нередко приводит не столько к экономии электроэнергии, сколько к избыточной освещённости и антропогенному световому загрязнению окружающей среды. Ключевыми мероприятиями оптимизации потребления электроэнергии на освещение являются:
- максимально рациональное использование дневного света (рациональное размещение и оптимальная площадь окон, применение оптимального режима бодрствования, максимально совпадающего со световым днём, использование световодов для освещения внутренних помещений);
- повышение отражающей способности интерьера и экстерьера (светлые наружные стены рядом стоящих зданий повышают освещённость в помещениях в дневное время за счёт отражения естественного света в окна);
- оптимальное размещение световых источников (местное освещение, направленное освещение);
- использование осветительных приборов только по необходимости, перевод освещения в дежурный режим когда оно меньше требуется (например, уличное освещение с 23-00 до 6-00 часов);
- повышение светоотдачи существующих источников (замена люстр, плафонов, удаление грязи с плафонов, применение более эффективных отражателей);
- Светодиодные лампы с цоколем Е40 предназначены для установки в стандартные светильники уличного освещения для рационального использования энергоресурсовзамена неэффективных ламп накаливания и содержащих опасную ртуть люминесцентных ламп на более энергоэффективные, безопасные и долговечные светодиодные лампы;
- применение устройств управления освещением (датчики движения и акустические датчики, датчики освещенности, таймеры, системы дистанционного управления);
- установка интеллектуальных распределённых систем управления освещением (минимизирующих затраты на электроэнергию для данного объекта).
Снижение потерь в электросетиПравить
- увеличение значений номиналов проводников — проводов и кабелей;
- отслеживание несанкционированных подключений.
- снижение реактивной потребляемой мощности
ЭлектроприводПравить
Основными мероприятиями являются:
- оптимальный подбор мощности электродвигателя;
- использование частотно-регулируемого привода (ЧРП).
Экономия теплаПравить
- использование эффективный теплоизоляционных материалов при строительстве и модернизации зданий. В средней полосе России 100—200 мм использование эффективного утеплителя позволяет сэкономить 50—60 % тепла;
- установка теплосберегающих оконных конструкций с применением низкоэмиссионного селективного стекла. Позволяет сэкономить 10—20 % тепла;
- устройство тамбуров на входе в здание и применение утеплённых входных и балконных дверей;
- установка рекуператора тепла выходящего воздуха. Позволяет сэкономить 20—30 % тепла;
Повышение эффективности систем теплоснабженияПравить
Мероприятия по повышению эффективности систем теплоснабжения предусматривают следующие направления оптимизации:
Со стороны источника:
- повышение эффективности источников теплоты за счет снижения затрат на собственные нужды;
- использование современного теплогенерирующего оборудования, такого как конденсационные котлы, пиролизные котлы и тепловые насосы;
- использование узлов учёта тепловой энергии;
- использование ко- и три- генерации;
- использование грунтовых теплообменников.
Со стороны тепловых сетей:
- Снижение тепловых потерь в окружающую среду;
- Оптимизация гидравлических режимов тепловых сетей;
- Использование современных теплоизоляционных материалов;
- Использование антивандальных покрытий при наружной прокладке тепловых сетей;
- Снижение утечек и несанкционированных сливов теплоносителя из трубопроводов.
Со стороны потребителей:
- Снижение тепловых потерь через наружные ограждающие конструкции;
- Использование вторичных энергоресурсов;
- Использование систем местного регулирования отопительных приборов для исключения перетопа;
- Перевод зданий в режим нулевого потребления теплоты на отопление. При этом поддержание параметров воздуха в здании должно происходить за счет внутренних выделений теплоты и высоких параметров тепловой изоляции;
- Использование узлов учёта тепловой энергии;
В целом же меню «технических решений» по модернизации систем теплоснабжения очень обширно и далеко не ограничивается вышеизложенным списком. Ниже приведен пример перечня мер из «Программы модернизации систем теплоснабжения» комплексной программы развития и модернизации жилищно-коммунального комплекса целого региона, включающего 22 муниципальных образования; 126 городских и сельских поселений; более чем 200 отдельных систем теплоснабжения.
Основные мероприятия программы разбиты на шесть укрупненных групп:
- Проведение предпроектных обследований объектов теплоснабжения;
- Строительство новых котельных;
- Модернизация и реконструкция котельных и ЦТП;
- Модернизация и строительство тепловых сетей;
- Внедрение ресурсосберегающих технологий;
- Для максимизации эффекта программы её реализуют в комплексе с модернизацией системы теплозащиты жилых и общественных зданий, совершенствованием их инженерных систем, мерами по утеплению квартир, оснащению их приборами учёта и эффективной водоразборной арматурой.
Экономия водыПравить
- установка приборов учёта потребления воды;
- использование воды, только когда это действительно необходимо;
- установка сливных унитазных бачков, имеющих выбор интенсивности слива воды;
- установка автоматических регуляторов расхода воды, аэраторов с регуляторами 6 л/мин для крана и регуляторов 10л/мин для душа;
- сбор и использование дождевой воды.
Экономия газаПравить
- подбор оптимальной мощности газового котла и насоса;
- утепление помещений, оптимальный подбор эффективных радиаторов отопления в помещениях, где используется обогрев газовым котлом;
- использование на газовых плитах посуды с широким плоским дном, закрывающейся крышкой, желательно прозрачной, подогрев в чайнике только необходимого количества воды;
- перевод отопления, по возможности, на максимально широкое использование иных, более дешёвых видов энергии.
Экономия моторного топливаПравить
- рациональное использование автотранспорта с целью минимизации непроизводительного пробега со слабой загрузкой;
- совершенствование организации дорожного движения и дорожно-транспортной инфраструктуры, внедрение современных информационных технологий для оптимизации и рационализации пассажирских и грузовых перевозок;
- использование электромобилей, автомобилей с гибридным приводом или на газовом топливе;
- плавные старты и торможения при движении на автомобиле;
- покупка автомобилей с низким расходом топлива;
- своевременная регулировка работы двигателя внутреннего сгорания;
- эффективный и комфортный общественный транспорт.
Энергосбережение в различных отраслях промышленностиПравить
Из всех потребляемых энергоресурсов на машиностроительных предприятиях около 30 % расходуется на чисто технологические процессы и около 70 % — на ТЭЦ, котельные, вентиляцию, освещение, выработку сжатого воздуха, внутризаводской транспорт и прочие вспомогательные нужды. Энергоемкими производствами в машиностроении являются: кузнечное, литейное, термическое и гальванопокрытий. Показателями эффективности использования энергоресурсов на предприятии машиностроительного комплекса являются:
Энергоемкость продукции рэн п ( кг у. тУруб
Электроемкость продукции Рэл п (кВт ч/руб
Теплоемкость продукции рт п (ГДж/руб. или Гкал/руб
Топливоемкость продукции РТОШ1 п (кг у. /руб.
На машиностроительных предприятиях с большим количеством металлообрабатывающих станков значительной экономии электроэнергии можно добиться следующими мероприятиями:
Уменьшением припусков и изменением формы заготовок с приближением их к форме готового изделия;
Изменением способов обработки изделий;
Применением многошпиндельных станков вместо сверления отверстий;
Выполнением фрезерных работ с установкой на одном станке нескольких фрез;
Увеличением загрузки или заменой недогруженных электродвигателей двигателями меньшей мощности;
Эффективность и экономический расчетПравить
При реализации мероприятий энергосбережения и повышения энергоэффективности различают:
- начальные инвестиции (или увеличение, прирост инвестиций из-за выбора более эффективного оборудования). Например, замена ветхих окон в существующем доме на современные со стеклопакетами — инвестиции в энергосбережение, а отказ от установки ламп накаливания и люминесцентных ламп в строящемся доме в пользу светодиодных — увеличение инвестиций в энергосбережение (в доле превышения стоимости светодиодных светильников над обычными);
- единовременные затраты на проведение энергоаудита (энергообследования);
- единовременные затраты на приобретение и монтаж приборов учёта и систем автоматического контроля, удаленного снятия показаний приборов учёта;
- текущие расходы на премирование (поощрение) ответственных за энергосбережение.
Как правило, эффекты от мероприятий энергосбережения рассчитывают:
- как стоимость сэкономленных энергоресурсов или доля стоимости от потребляемых энергоресурсов, в том числе на единицу продукции;
- как количество тонн условного топлива (т. у. т.) сэкономленных энергоресурсов или доля от величины потребляемых энергоресурсов в т. у. т.;
- в натуральном выражении (кВт. ч., Гкал и т. д.);
- как снижение доли энергоресурсов в ВВП в стоимостном выражении, либо в натуральных единицах (т. у. т., кВт. ч.) на 1 руб. ВВП
Эффекты от мероприятий энергосбережения можно разделить на несколько групп:
- экономические эффекты у потребителей (снижение стоимости приобретаемых энергоресурсов);
- эффекты повышения конкурентоспособности (снижение потребления энергоресурсов на единицу производимой продукции, энергоэффективность производимой продукции при её использовании);
- эффекты для электрической, тепловой, газовой сети (снижение пиковых нагрузок приводит к снижению риска аварий, повышению качества энергии, снижению потерь энергии, минимизации инвестиций в расширение сети, и, как следствие, снижению сетевых тарифов);
- рыночные эффекты (например, снижение потребления электроэнергии, особенно в пиковые часы, приводит к снижению цен на энергию и мощность на оптовом рынке электроэнергии — особенно важным является снижение потребления электроэнергии в вечернем пике);
- эффекты, связанные с особенностями регулирования (например, снижение потребления электроэнергии населением уменьшает нагрузку перекрёстного субсидирования на промышленность — в настоящее время в СНГ население платит за электроэнергию, как правило, ниже её себестоимости, дополнительная финансовая нагрузка включается в тарифы для промышленности);
- экологические эффекты (например, снижение потребления электрической и тепловой энергии в зимнее время приводит к разгрузке наиболее дорогих и «грязных» электростанций и котельных, работающих на мазуте и низкокачественном угле.);
- связанные эффекты (внимание к проблемам энергосбережения приводит к повышению озабоченности проблемами общей эффективности системы — технологии, организации, логистики на производстве, системы взаимоотношений, платежей и ответственности в ЖКХ, отношения к домашнему бюджету у граждан).
Обычно началу реализации мероприятий по энергосбережению предшествует проведение энергоаудита.
Факторы, сдерживающие энергосбережениеПравить
- Одним из препятствий к повсеместному осуществлению энергосбережения в быту на постсоветском пространстве является отсутствие массовой бытовой культуры энергосбережения вследствие длительного советского периода низких цен на энергоносители в прошлом. В странах СНГ цены на энергоресурсы, тепловую и электрическую энергию продолжают оставаться на сравнительно низком уровне по сравнению со странами Европы. Богатство большинства стран СНГ (Россия, Казахстан, Азербайджан, Туркменистан, Узбекистан, Таджикистан, Кыргызстан) энергетическими ресурсами (атомная энергия, нефть, газ, уголь, гидроэнергоресурсы) не стимулирует к энергосбережению.
- В современный период широко распространена практика применения для населения низких тарифов социальной направленности на многие виды ресурсов (электроэнергия, газ, горячее и холодное водоснабжение, центральное отопление), снижающая заинтересованность потребителей в экономии энергоресурсов.
- Низкая доля расчетов по индивидуальным приборам учёта и применение фиксированных нормативов. Например, при расчёте оплаты без приборов учёта (т.е. по установленному нормативу в расчете на одного человека) у потребителя возникает противоположный сбережению мотив к расточительству. При фиксированном нормативе каждая лишняя потреблённая единица ресурса (кубометр газа или горячей воды) удешевляет потребителю удельную стоимость ресурса.
- Дороговизна индивидуальной установки приборов учета для социально незащищённых категорий потребителей. Приобретение, монтаж, поверка и замена индивидуальных приборов учёта в большинстве случаев осуществляется за счёт конечного потребителя. Стоимость работ по индивидуальной установке приборов учёта многократно превышает себестоимость аналогичных работ при массовой организованной установке счётчиков силами ресурсоснабжающих организаций. В ряде случаев установка приборов учёта сильно затруднена по техническим причинам, что приводит к дополнительному удорожанию работ и сводит на нет все преимущества использования приборов учёта.
Законодательство РФ в области энергосбереженияПравить
Начало процессу формирования принципов и механизмов государственной политики в области энергосбережения РФ было положено выходом в свет постановления Правительства Российской Федерации «О неотложных мерах по энергосбережению в области добычи, производства, транспортировки и использования нефти, газа и нефтепродуктов» (№ 371 от 01. 92 г. ) и одобрением в этом же году Правительством РФ Концепции энергетической политики России.
В апреле 1996 года был принят Федеральный закон № 28-ФЗ «Об энергосбережении».
Новый Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» от 23 ноября 2009 года определяет основные требования к энергетической эффективности предприятий, организаций, в том числе бюджетных и осуществляющих регулируемые виды деятельности, требования в отношении отдельных видов товаров и оборудования, зданий, в том числе многоквартирных домов, определяет условия энергосервисных контрактов, правила создания и функционирования саморегулируемых организаций энергоаудиторов, вводит штрафы за невыполнение отдельных требований и нормативов энергоэффективности.
Сегодня энергоэффективность и энергосбережение входят в 5 стратегических направлений приоритетного технологического развития, названных президентом РФ Дмитрием Медведевым на заседании Комиссии по модернизации и технологическому развитию экономики России, которая состоялась 18 июня 2009 года.
Эта тема была продолжена президентом на расширенном заседании президиума Госсовета 2 июля 2009 года в Архангельске. Среди основных проблем, обозначенных Медведевым, — низкая энергоэффективность во всех сферах, особенно в бюджетном секторе, ЖКХ, влияние цен энергоносителей на себестоимость продукции и её конкурентоспособность.
Одна из важнейших стратегических задач страны, поставленной президентом (Указ № 889 от 4 июня 2008 года «О некоторых мерах по повышению энергетической и экологической эффективности российской экономики»)— снижение энергоёмкости отечественной экономики (ВВП) на 40 % к 2020 году. Для её реализации необходимо создание совершенной системы управления энергоэффективностью и энергосбережением. В связи с этим Министерством энергетики РФ было принято решение о преобразовании подведомственного ФГУ «Объединение» Росинформресурс» в Российское энергетическое агентство, с возложением на него соответствующих функций.
Приказ Министерства энергетики РФ от 19 апреля 2010 г. № 182″Об утверждении требований к энергетическому паспорту, составленном по результатам обязательного энергетического обследования, и энергетическому паспорту, составленному на основании проектной документации, и правил направления копии энергетического паспорта, составленного по результатам обязательного энергетического обследования»
Воплотить в жизнь постановления правительства не удалось:
- В РФ до сих пор есть и продолжают строиться многоквартирные и частные здания практически без утепления, либо с минимальным утеплением, которые не соответствуют современным требованиям энергосбережения, например таким, какие приняты в ЕС.
- Многие города продолжают использовать неэффективный и дорогой мазут в качестве сырья для отопления.
- Продолжается использование лампочек накаливания вместо энергосберегающих.
- Топливно-энергетические ресурсы (ТЭР) — совокупность различных видов топлива и энергетических ресурсов (продукция нефтеперерабатывающей, газовой, угольной, торфяной и сланцевой промышленности, электроэнергия атомных и гидроэлектростанций, а также местные виды топлива), которыми располагает страна для обеспечения производственных, бытовых и экспортных потребностей.
- источник определения (с небольшими изменениями) ГОСТ Р 51387-99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения.
- Ресин В. И. Эффективные методы управления энергосбережением в строительстве // Архитектура и строительство Москвы. 2003. Т. 508-509. № 2-3. С. 7-13.
- Выбор ориентации прямоугольных в плане зданий относительно стран света
- Finnish Solutions for Zero Energy Building. 25.5.2011. Jyri Nieminen // VTT (англ.)
- В Бишкеке появился первый экологичный «зелёный» дом
- Богуславский, 1990, с. 68.
- Богуславский, 1990, с. 203.
- М75 Энергосбережение в теплоэнергетике и теплотехнологиях: учебное пособие / Л.И. Молодежникова; Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2011. — с 136-138
- Норматив потребления воды на 1 человека
ЛитератураПравить
- Богуславский Л. Д., Ливчак В. И., Титов В. П. Энергосбережение в системах теплоснабжения, вентиляции и кондиционирования воздуха. — М.: Стройиздат, 1990. — 624 с. — ISBN 5-274-01052-0.
- ред. Кондратьев В. В. Организация энергосбережения (энергоменеджмент). Решения ЗСМК — НКМК — НТМК — ЕВРАЗ. — М.: Инфра-М, 2011. — 108 с. — ISBN 978-5-16-004149-0.
Выше класс, ниже платежка: главное об энергоэффективных домах
Выше класс, ниже платежка: главное об энергоэффективных домах — Недвижимость РИА Новости, 29. 2021
Исправно работающие инженерные системы, энергосберегающее оборудование, современное светодиодное освещение, качественная теплоизоляция, герметичность фасада и. Недвижимость РИА Новости, 29. 2021
– риа недвижимость
москва сегодня: мегаполис для жизни
городское хозяйство москвы
комплекс городского хозяйства москвы
Исправно работающие инженерные системы, энергосберегающее оборудование, современное светодиодное освещение, качественная теплоизоляция, герметичность фасада и ограждающих конструкций – все это не только обеспечивает комфортные условия для проживания в многоквартирном доме, но и влияет на показатели его энергоэффективности. Сайт «РИА Недвижимость» решил разобраться, что такое энергоэффективность в отношении жилых домов, и узнал у специалистов Мосжилинспекции, как она влияет на кошелек собственников квартир и зачем ее повышать.
7 495 645-6601
ФГУП МИА «Россия сегодня»
– риа недвижимость, москва, жкх, теплоснабжение, городское хозяйство москвы, комплекс городского хозяйства москвы, отопление, мосжилинспекция
– РИА Недвижимость, Москва Сегодня: мегаполис для жизни, Москва, ЖКХ, Теплоснабжение, Городское хозяйство Москвы, Комплекс городского хозяйства Москвы, Отопление, Мосжилинспекция
Что такое энергоэффективность в отношении жилого дома? От чего она зависит?
Энергоэффективность жилого дома – эффективное или рациональное использование его энергоресурсов. В их число входят системы отопления, вентиляции, освещения, водоснабжения – словом, все факторы, необходимые для стабильного жизнеобеспечения объекта. Говоря по-простому, чем экономнее расходуются ресурсы дома, тем выше его энергоэффективность.
На данный показатель влияет немало факторов: это и конструктивные особенности здания, и строительные материалы, и работа инженерного оборудования. Например, если в доме не в порядке тепловые коммуникации или «хромает» теплоизоляция, расход ресурса из-за дополнительных потерь тепла будет выше, а показатели энергоэффективности, наоборот, ниже.
Немалую роль играет наличие в доме индивидуального теплового пункта, автоматического узла управления системы отопления, светотехнического оборудования с энергосберегающим эффектом, светодиодного освещения, приборов учета тепловой энергии и электричества, индивидуальных приборов учета холодной и горячей воды. Все это в совокупности создает базу для того, чтобы дом соответствовал определенному классу энергоэффективности.
На какие классы подразделяется энергоэффективность домов?
В 2016 году приказом Минстроя РФ определено девять классов энергоэффективности для жилых домов. Самый низкий – G, самый высокий – А++.
Чем отличаются дома с высоким классом энергоэффективности от объектов с низким классом?
Дома с высоким классом энергоэффективности характеризуются прекрасной теплоизоляцией, оснащены современным оборудованием, позволяющим минимизировать расход энергоресурсов. Большая часть таких домов – новостройки, в проектах которых изначально учтены энергосберегающие решения.
К низкому классу энергоэффективности G, в свою очередь, относятся объекты старого жилого фонда. Это, например, хрущевки, объекты дореволюционной застройки, которые плохо держат тепло и имеют ветхое инженерное оборудование. В таких домах часто отсутствуют индивидуальные тепловые пункты, установлены деревянные окна, а в квартирах собственников работают устаревшие плиты. Все эти факторы создают почву для энергетических потерь и в итоге определяют низкий класс энергоэффективности.
Кто и как определяет класс энергоэффективности дома?
Присвоение класса – многоступенчатый процесс, в котором участвует лицо, ответственное за содержание жилого дома (например, управляющая компания), и специалисты Мосжилинспекции, которые производят необходимые расчеты показателей энергоэффективности на основании декларации, поданной лицом, ответственным за содержание многоквартирного жилого дома.
Вместе с тем, согласно федеральному законодательству, УК обязана не реже раза в год разрабатывать и доводить до собственников помещений предложения по улучшению энергоэффективности дома (замена внутридомового оборудования на более современное, комплексный ремонт и надлежащее содержание инженерных коммуникаций, установка энергосберегающего оборудования и так далее). Далее собственники на общем собрании утверждают поступившие предложения, а управляющая организация их реализует. По итогам УК вправе подать в Мосжилинспекцию декларацию, на основании которой специалисты надзорного органа производят необходимые расчеты и определяют класс энергоэффективности объекта. Специалисты также могут установить, изменился ли класс, если ранее он уже был присвоен.
В дальнейшем класс можно подтвердить или пересчитать, но не чаще, чем раз в год. В результате пересчета показатели энергоэффективности могут как понизиться (например, за счет износа коммуникаций и дополнительных потерь ресурсов), так и повыситься (если УК, например, провела комплексный ремонт или замену внутридомового оборудования).
Как собственникам узнать класс энергоэффективности своего дома?
На фасадах домов, в отношении которых Мосжилинспекция произвела расчеты и присвоила или подтвердила класс энергетической эффективности, в установленной форме размещается специальный указатель, где и отображается класс энергоэффективности.
За счет каких мероприятий проще и быстрее всего повысить энергоэффективность дома?
Это зависит от состояния дома и установленного в нем оборудования. Прежде чем приступать к определенным работам по повышению энергоэффективности, специалисты УК обязаны изучить все системы дома, определить их состояние и предложить собственникам варианты решения выявленных проблем – от самых простых до более сложных. При этом УК должна предоставить владельцам квартир данные о стоимости, сроках окупаемости и ожидаемом эффекте от планируемых работ.
В соответствующем приказе Минстроя РФ рекомендуются 22 вида мероприятий по повышению класса энергоэффективности дома, в частности:
— установка светодиодных ламп и светильников;
— установка оборудования для автоматизированного управления освещением;
— установка и своевременная поверка приборов учета электроэнергии;
— установка энергоэффективного оборудования системы электроснабжения;
— своевременная замена оборудования с истекшим сроком эксплуатации;
— установка энергоэффективного оборудования системы холодного и горячего водоснабжения;
— установка индивидуальных тепловых пунктов с системой автоматизированного погодного регулирования.
— и другие.
Такие работы могут проводиться как в рамках текущего, так и капитального ремонта дома.
Сколько в Москве домов с присвоенным классом энергоэффективности?
По линии Мосжилинспекции с 2016 года класс энергоэффективности присвоен уже более 15 тысячам многоквартирных домов Москвы.
Домов какого класса энергоэффективности в Москве больше всего? В чем их особенности?
На данный момент основной класс для жилых домов Москвы – D, который считается нормальным показателем. В домах такой категории ресурсы расходуются стабильно и равномерно, без излишнего потребления и экономии.
В каком округе или районе города больше всего высококлассных домов по энергоффективности?
По данным Мосжилинспекции, больше всего домов с высоким классом энергоэффективности расположено в Центральном округе столицы.
Как класс энергоэффективности влияет на условия проживания в доме?
Чем выше класс энергоффективности дома, тем комфортнее условия проживания в нем, особенно в осенне-зимний период. Например, светодиодное оборудование позволяет снизить показатели потребления электроэнергии, не сказываясь при этом на качестве освещения, дает более высокую и комфортную для глаз освещенность. Благодаря общедомовым и индивидуальным приборам учета собственники оплачивают только те объемы, которые непосредственно потребили, корректная и надлежащая работа инженерного оборудования позволяет более рационально расходовать коммунальные ресурсы и не допускать повышенной или пониженной температуры в помещениях.
Все это в совокупности создает определенный комфорт для жителей энергоэффективного дома – как физический, так и материальный.
Как класс энергоэффективности влияет на размер ежемесячных платежей за жилищно-коммунальные услуги?
Напрямую. Чем ниже объем потребляемых ресурсов, тем меньше платят собственники. По статистике, самые дорогие позиции в ежемесячной платежке за ЖКУ – отопление, электроснабжение и горячее водоснабжение. Соответственно, если в доме исправно работают тепловые коммуникации, а владельцы квартир платят за воду и свет исключительно по данным индивидуальных приборов учета (то есть, сколько потратили, столько и заплатили), тем экономия и ресурсов в среднем по объекту, и денег собственников выше.
Покупателей жилья все чаще волнует вопросы, связанные не только с эксплуатационными характеристиками жилья, но и с его экологичностью и энергоэффективностью
Наиболее оптимальный дом с точки зрения энергоэффективности
Строительство — одна из самых перспективных отраслей в сфере применения принципов устойчивого развития (ESG). В мире активно развивается так называемое «зеленое» строительство, а технологии с приставкой «эко» все чаще применяются девелоперами при возведении современных жилых объектов, а также офисных и торговых помещений.
В массовом сегменте «зеленые» технологии пока ограничиваются вопросами энергоэффективности, но все больше покупателей начинают обращать внимание на различные экотехнологии. К ним относится строительство энергоэффективных «теплых» домов, которые позволяют лучше сохранять тепло и уменьшить потребление энергии на обогрев дома.
14 октября 2021 года РБК проведет конгресс ESG–(Р)Эволюция. В нем примут участие руководители крупнейших российских и мировых компаний, а также главы ведомств, отвечающих за ESG-повестку. Мероприятие будет первым крупным форумом по ESG в России. Чтобы принять в нем участие, пройдите по ссылке.
Что такое энергопассивный дом
Термином «энергопассивный дом» обозначают жилое строение, теплоэффективность которого с учетом потерь тепла через пол, стены, потолок, двери и окна на 30% выше, чем у стандартных коттеджей. Уже на этапе подготовки проекта энергоэффективного дома следует стремиться к минимальным потерям тепла во всех этих составляющих здания. Так достигается баланс между выгодой в эксплуатации и специальным дополнительным утеплением.
Эксперты в статье:
- Илья Бузик, руководитель отдела авторского надзора Градостроительного института пространственного моделирования городов «Гипрогорпроект»
- Станислав Лобанов, директор по маркетингу управления недвижимости компании Millhouse
- Олег Новосад, директор департамента загородной недвижимости компании «Инком-Недвижимость»
Энергопассивными считаются дома, в которых энергия для поддержания здорового климата в помещении снижена до максимально низкого уровня. Такие здания практически энергонезависимы. Тепловые потери пассивного дома составляют менее 15 кВт час на 1 кв. м в год. При этом, в обычных домах на обогрев тратится до 300 кВт час на 1 кв. м в год, поясняет руководитель отдела авторского надзора Градостроительного института пространственного моделирования городов «Гипрогорпроект» Илья Бузик.
Считается, что энергопассивные дома — самые совершенные с точки зрения комфорта внутреннего климата помещений. При их строительстве применяются современные строительные материалы и конструкции и новейшее инженерное оборудование. «Но у таких домов есть два минуса — высокая себестоимость и очень небольшое число проектировщиков и строителей, которые владеют всеми нужными технологиями. Технологических решений в России пока мало, так как из-за дороговизны этим не занимаются и необходимые компетенции у специалистов отсутствуют», — замечает директор департамента загородной недвижимости компании «Инком-Недвижимость» Олег Новосад.
«Энегропассивный дом предполагает наличие надежной теплоизоляции и системы вентиляции с рекуперацией, продуманное расположение окон и их высокую сопротивляемость температурным воздействиям, воздухонепроницаемость и проектирование без тепловых мостов», — говорит директор по маркетингу управления недвижимости компании Millhouse Станислав Лобанов.
Уже на этапе подготовки проекта энергоэффективного пассивного дома следует стремиться к созданию минимальных потерь тепла сразу во всех этих составляющих здания
Строительство энергопассивного дома предполагает некоторый план действий еще на стадии проектирования. Нужно учесть использование солнечной энергии, максимальную естественную инсоляцию здания, сделать упор на внутренние источники тепла и рекуперацию. В теплое время года использование кондиционера минимизируется за счет затенения зданий, использования зеленых насаждений в качестве естественного барьера. Так же важно соблюдение принципов зонирования территории, правильной геометрии здания и ориентации по сторонам света.
Особенности строительства
Часто под энергопассивным и экологичным домом подразумеваются здания, построенные из традиционных природных материалов или переработанных отходов — газобетона, дерева, каменя, кирпича, хотя каменные дома холодные, а некоторые современные утеплители не являются природными материалами. В последнее время стали появляться энергопассивные дома из продуктов переработки неорганического мусора — бетона, стекла и металла. В Германии построены заводы по переработке подобных отходов в строительные материалы для энергоэффективных зданий.
Технология пассивного дома предусматривает эффективную теплоизоляцию всех ограждающих поверхностей — не только стен, но и пола, потолка, чердака, подвала и фундамента. В пассивном доме формируется высокоэффективная наружная теплоизоляция ограждающих поверхностей.
Снаружи дом герметичен — окна не должны открываться. Крыша в таких домах, как правило, плоская, с белым покрытием для отражения солнечного света летом. Внутри же напротив, материал должен быть открыт, накапливать и отдавать тепло зимой и сохранять прохладу в летний период.
Вентиляция и проветривание в таких домах осуществляются через рекупиратор (теплообменник), с отводом лишнего тепла. Нагрев воды в зимнее время проводится при помощи теплового насоса, который использует тепло земли и установлен ниже глубины промерзания грунта. В энергопассивных домах часто дополнительно используют солнечные батареи, нагрев воды происходит под воздействием тепла солнца и аккумулированной электроэнергии.
Главное — герметичность
Хорошо теплоизолированная оболочка здания сохраняет тепло зимой и обеспечивает приятную прохладу летом. «Использование низкоэмиссионных стекол, «теплых» дистанционных рамок и заполнение межстекольного пространства инертными газами (аргоном и криптоном) в стеклопакетах, а также применение многокамерных ПВХ-профилей уменьшает потери тепла через окна. Расположение окон на южном фасаде и сведение их площадей к минимуму на северном также обеспечивает экономию расхода тепла», — говорит Станислав Лобанов.
Пассивные дома должны быть герметичными, чтобы исключить фильтрацию воздуха через наружную оболочку. «Это позволяет увеличить энергоэффективность, минимизировать сквозняки и повреждения плесенью ограждающих конструкций из-за излишней влаги. Проектирование без тепловых мостов способствует равномерному распределению температуры и тоже исключает разрушения из-за влаги. Кроме того, улучшению энергоэффективности дома способствует система вентиляции с рекуперацией тепла», — говорит Илья Бузик.
Илья Бузик, руководитель отдела авторского надзора Градостроительного института пространственного моделирования городов «Гипрогорпроект»:
— В качестве примера можно привести типовой проект энергоэффективного дома со стенами из деревянного бруса сечением 50х150 мм. Его каркас обшит ориентированными стружечными плитами (ОСП) в полтора раза больше по прочности, чем дерево. Пространства между плитами толщиной 150 мм заполнены, например, пожароустойчивым пеноизолом. Каркас стеклянной галереи изготовлен из фасадного алюминиевого профиля, для остекления применено самоочищающееся бактерицидное стекло толщиной 6 мм. Зеркальное покрытие стекла отражает лучи высокого летнего солнца, защищая стены от перегрева, и хорошо пропускает тепло зимнего солнца, которое ходит низко от горизонта.
В России все на начальном этапе
В России комплексный подход к рациональному использованию ресурсов находится на начальном этапе развития. Проекты, сертифицированные по западным экостандартам, только начинают появляться. Например, в Сколково строится жилая, коммерческая и социальная инфраструктура в соответствии с международными стандартами эко сертификации BREEAM, Well и Fitwel.
«Затраты на возведение такого дома часто превышают обычное строительство примерно на 20% и окупаются в течение 10 лет. Пока энергопассивные дома не имеют массового спроса в России. Застройщики неохотно берут на себя ответственность за энергосбережение. Строительство энергосберегающих домов возможно только по инициативе заказчика, будущего собственника домовладения», — отмечает Олег Новосад.
А как у них
- В Дании расположен комплекс Green Lighthouse. Это административное здание университета Копенгагена. В комплексе размещены учебные центры, конференц-залы и администрация университета. Энергосбережение на 75% обеспечивается дизайнерскими и архитектурными решениями. Здание расположено таким образом, что большая его часть ориентирована на юг, что дает максимально эффективное использование естественного света. Окна и двери комплекса снабжены специальными защитными слоями, которые препятствуют нагреванию помещения в теплое время года. Это решение позволило радикально сократить использование кондиционеров.
- В Страсбурге совсем недавно появился энергопассивный жилой комплекс Elithis Danube. За счет расположения на южную сторону и максимальную инсоляцию башня способна аккумулировать солнечную энергию, а затем использовать ее для автономного энергообеспечения. Солнечные панели расположены по всему фасаду здания, а система «умный» дом регулирует естественную инсоляцию в помещениях.
- Самодостаточный солнечный дом Heliotrop находится в немецком Фрайбурге. Именно этот город считается одним из эталонных в мире по части применения «зеленых» технологий. А пригород Фрайбурга — Вобан — это целый район из активных зданий. Его жители также полностью отказались от использования автотранспорта. Уникальность дома Heliotrop в том, что он генерирует энергии в пять раз больше, чем потребляет. Отопление, горячее водоснабжение, электричество — все обеспечивается исключительно за счет солнца.
- Комплекс Beddington Zero Energy Development построен в округе Саттон в 15 км от Лондона и включает в себя 99 квартир и 1,5 тыс. кв. м офисов. В основном, коммерческие площади здесь занимают архитектурные и строительные компании, в числе которых архбюро Билла Данстера — одного из главных авторов проекта BedZED. Большинство жильцов комплекса работают здесь же. При этом они почти не пользуются автомобилями.
- Zero Carbon Building (ZCB) находится в Гонконге в районе комплексной застройки Kowloon Bay. Этот проект служит реальным доказательством того, что соответствовать стандартам Triple Zero здания могут и в условиях субтропического климата. Это одно из самых технологичных зданий мира с нулевым уровнем эмиссии углерода. ZCB производит больше энергии, чем потребляет, при этом излишки энергии направляются в энергосистему города.