В статье изложены основные положения новой прикладной дисциплины -теории энергоэффективности силовых трансформаторов. Сформулирован основной закон энергоэффективности совокупности конвенционально выделенной совокупности силовых трансформаторов. Описана онтология теории. Дана аксиоматика и выведены математические формулировки основных положений теории энергоэффективности силовых трансформаторов. Приведены примеры практического применения теории.
- Введение
- Основные положения теории энергоэффективности силовых трансформаторов
- Игра
- Методология оптимизации энергетической эффективности техноценоза «Силовые трансформаторы»
- I-й этап
- II-й этап
- За пределами технологий
- Методология внедрения энергоэффективных силовых трансформаторов.
- Методология выбора поставщика энергоэффективных силовых трансформаторов.
- Предпосылки
- Практическое применение теории энергоэффективности силовых трансформаторов
- Данные расчета увеличения объема техноценоза «Силовые трансформаторы» в России в 2020 году
- Потенциал энергосбережения в России за счет замены обычных силовых трансформаторов I — III габарита на энергоэффективные.
- Подробные результаты расчетов
- Будущее
- Хуже — лучше
- Правильный инструмент для работы
- Список литературы
- Выводы
Введение
Он формулируется в следующем виде:
Максимальной энергоэффективностью обладает такой техноценоз «силовые трансформаторы» любого уровня (федерального, регионального, местного), который является оптимальным номенклатурно и параметрически, с одной стороны, и с другой стороны, каждый элемент (особь) каждого вида (группы трансформаторов определенной мощности) которого имеют максимальный коэффициент энергетической эффективности с точки зрения трансформации электроэнергии.
Закон понятен интуитивно и логически следует из приведенных выше трёх основных аксиом. Он позволил сформулировать методологии применения и прогнозирования, а также ряд практически значимых методик расчета параметров энергоэффективности совокупностей энергоэффективных трансформаторов и отдельных силовых трансформаторов. В частности, автором созданы или находятся в стадии разработки:
- Методология прогнозирования динамики изменения объема техноценоза при увеличении электропотребления (проще говоря, прогнозирование спроса на энергоэффективные силовые трансформаторы).
- Оценка потенциала энергосбережения электроэнергии в России за счет замены обычных трансформаторов на энергоэффективные трансформаторы.
- Методология оптимизации энергетической эффективности техноценоза «Силовые трансформаторы» .
- Методология внедрения энергоэффективных силовых трансформаторов.
- Методология выбора поставщика энергоэффективных силовых трансформаторов.
Далее излагаются основные математические зависимости, используемые в указанных выше конструктах, которые являются предметом исследования теории энергоэффективности силовых трансформаторов.
Специалисты Южно-Уральского государственного университета (ЮУрГУ) совместно с коллегами из ПАО «ММК» разработали систему цифровых двойников турбоагрегатов, используя для этого промышленный интернет вещей (IIoT) и методы моделирования физических процессов.
Проанализировав уровень технического оснащения электростанций ПАО «ММК», специалисты пришли к выводу, что он пока не позволяет полноценно отслеживать параметры работы турбоагрегатов. А также проводить оценку их технического состояния.
Чтобы решить эту проблему, они предложили создать автоматизированную систему цифровых двойников турбоагрегатов, состоящую из нескольких подсистем.
«Разрабатываемая система состоит из следующих подсистем: подсистема сбора технологических параметров; подсистема онлайн мониторинга энергетических характеристик и состояния энергоагрегата; подсистема непрерывного отслеживания вибрационного состояния; подсистема интеграции данных во внешние автоматизированные системы управления предприятием», — пояснил руководитель проекта, профессор Дмитрий Шнайдер.
Работать автоматизированная система будет в режиме реального времени, все нужные данные будет собирать беспроводная сеть датчиков давления и температур. Для одного энергоагрегата предусмотрено считывание от 25 до 100 параметров в зависимости от его типа.
Использование такой системы позволит контролировать затраты энергетических ресурсов с выявлением потенциальных мест их утечек, а также проводить диагностику оборудования с поиском возможных дефектов. Благодаря этому улучшится управление загрузкой энергоагрегатов электростанций, повысятся их КПД и надежность работы и одновременно сократится количество незапланированных простоев.
Основные положения теории энергоэффективности силовых трансформаторов
При формулировке теории энергоэффективности силовых трансформаторов использованы аксиоматический и гипотетико-дедуктивный подходы. Объектом исследования теории прикладной энергоэффективности является совокупность энергоэффективных трансформаторов, изготавливаемых в соответствии с требованиям европейских стандартов энергоэффективности, а также российских стандартов ГОСТ Р 52719-2007, ГОСТ Р 54728-2011, ГОСТ 16772-77, СТО 34. 01-3. 2-011-2017. Предметом исследования являются закономерности, позволяющие рассчитать параметры силовых трансформаторов и условия их эксплуатации, которые обеспечивают минимальную стоимость трансформации электроэнергии. Применяемые в сформулированной теории энергоэффективности силовых трансформаторов математические методы исследования основаны на следующих конструктах: 1) третья научная картина мира (технократический подход); 2) понятие техноценоза; 3) негауссова математическая статистика устойчивых безгранично делимых гиперболических распределений; 4) второе начало термодинамики в форме закона оптимального построения техноценоза.
В основу теории энергоэффективности силовых трансформаторов положены следующие аксиомы:
- Все функционирующие в рамках административного региона, региональной сетевой компании, страны в целом на конкретный момент времени силовые трансформаторы (являющиеся источниками электроэнергии каждый для своей обособленной группы потребителей), рассматриваются как конвенционально выделенная совокупность объектов исследования, связанных между собой слабыми связями; структура этой совокупности (зависимость количества трансформаторов от ранга), упорядоченной по определяющему видовому параметру (мощность трансформатора), описывается специальным математическим конструктом — гиперболическим распределением.
- Каждый из функционирующих в конкретный момент времени силовых трансформаторов, являющийся источником электроэнергии для своей обособленной группы потребителей, рассматривается в то же время как объект исследования, связанный сильными связями (электромагнитными) со своими потребителями электрической энергии и другими элементами конкретной электрораспределительной сети.
- Существует взаимно-однозначное соответствие максимальной энергоэффективности техноценоза «Силовые трансформаторы» с его номенклатурной и параметрической оптимальностью и оптимальностью параметров энергоэффективности силовых трансформаторов, входящих в рассматриваемый техноценоз.
Эта аксиома требует использовать законы электротехники для расчета основных параметров отдельных энергоэффективных трансформаторов (оптимальный коэффициент загрузки, мощность потерь холостого хода и короткого замыкания).
Данная аксиома позволяет сформулировать методологию расчета оптимальных структурных, экономических и электротехнических параметров, характеризующих энергоэффективность совокупностей объектов исследования на федеральном, региональном и местном уровнях.
Игра
Итак, почему существуют кластеры?
Программирование — это управление сложностью. Согласно теории сложности, сложность нельзя контролировать. Но ею можно управлять, устанавливая границы, а затем добавляя механизмы, которые направляют систему в нужном направлении — или удаляя те, которые ведут в неправильном направлении.
Разделим область на зоны вокруг кластеров и посмотрим, какие методы работы со сложностью используются в данных зонах:
Вот ограничения и аттракторы, используемые в различных зонах сложности. Мы можем видеть целый спектр систем типизации, тестирования, лучших практик, меняющийся от очень свободных до очень строгих и упорядоченных. Границы между зонами тоже не жесткие, скорее вся плоскость — спектр сложности. Тем не менее, данные границы реальны, и их пересечение — это фазовый сдвиг, требующий энергии.
Автодополнение в IDE привлекает внимание, поскольку делает разработку более стабильной: программисты работают эффективнее, тратя меньше интеллектуальных усилий на исправление ошибок, и больше — решению других вопросов.
Описание решаемой проблемы — конечный аттрактор, оно направляет разработку ПО в нужную сторону.
Аттракторы действительно направляют систему в нужное состояние — в нашем случае это процесс энергоэффективного развития на всех этапах эволюции от хаотического начального состояния к сложной технической поддержку или унаследованному состоянию. Принципы, код-конвенции, автодополнение, эталонные решения, примеры и т. — все это аттракторы.
Некоторые аттракторы принудительно вводятся в действие и становятся ограничениями, например, правила линтера. Тесты, системы типов могут применяться принудительно и, таким образом, использоваться для установки ограничений.
Boundaries — наибольшие ограничения. Например, выбранный язык программирования или фреймворк (в смысле акторов в Акке, Эрланге): мы выбираем работу в пространстве, связывая себя с ним. Затем устанавливаем разрешающие и управляющие ограничения, например тесты и типизацию, чтобы ограничить себя внутри границ. Затем используем все, что у нас есть, чтобы направиться в желаемую сторону — принципы, цели.
Подумайте о химическом веществе, например воде. Она может находиться в твердом, жидком, газообразном состоянии, в виде плазмы. У данных состояний разные свойства сложности. Требуется энергия, чтобы перейти из одного состояния в другое. Такие переходы известны как фазовые сдвиги. Вещество поглощает или отдает энергию, изменяет свою сложность и энтропию в зависимости от состояния.
Внешняя система (например, вы) в любом случае должна тратить энергию на управление энергией и на собственные операции, переходя между состояниями.
Вещество, вода — программный продукт, который мы создаем. Процесс его построения — процесс разработки ПО, который мы сейчас анализируем. Чтобы привести продукт в желаемое состояние, приходится тратить энергию. На графике расхода энергии появляются всплески при пересечении границ зон сложности.
Подумайте о затратах энергии на поддержание существующего приложения: не на миграцию всей системы в новую архитектуру/ фреймворк/ модель данных/ микросервисы, а просто исправление ошибок и добавление второстепенных функций.
Эта картина напоминает еще один фреймворк для управления сложностью — Cynefin:
Видно, например, как область с нулевыми или специальными ограничениями изменяется и становится областью с:
- разрешающими ограничениями: модульные тесты, автодополнение в IDE, динамические типы;
- управляющими ограничениями: сквозное тестирование, интеграционные тесты, системы сильных типов;
- фиксированными ограничениями: чистые, детерминированные системы типов, исчерпывающие тесты на основе свойств.
Мы обнаружили, что спектр инструментов разработки ПО сгруппирован по областям на графике, и данные области демонстрируют различные подходы к управлению сложностью, которые совпадают с областями сложности Cynefin. У нас на карте указаны даже пограничные зоны, когда технологии находятся на краю зон, и мы можем получить или вывести полезные свойства из других зон, или переключиться на них для удобства экспериментов.
Результат довольно интересный. Cynefin — устоявшаяся структура для управления сложностью, со своими собственными методологиями и применениями в других областях, и теперь можно использовать ее для технологической части разработки программного обеспечения.
Программные продукты — сложные системы, которые эволюционируют от первоначального хаотичного состояния до сложного и до конечной упорядоченной системы.
На различных этапах необходимы различные подходы и инструменты, например:
- Сначала те, что минимизируют затраты на изменения, пока не получится MVP.
- Затем — те, что сводят к минимуму затраты на отходы при увеличении масштаба продукта и на регрессы для уже существующих устаревших продуктов.
Обратите внимание, что эволюция разработки программного продукта отличается от эволюции технологии разработки ПО. В этой статье в основном говорится о последнем. А первое является новым компонентом процесса разработки ПО.
- Эволюция разработки программного продукта идет по пути эволюции сложности.
- Эволюция сложности определяет выбор правильных процессов, команд, людей и инструментов для каждого этапа.
Методология оптимизации энергетической эффективности техноценоза «Силовые трансформаторы»
Одним из главных результатов применения теории энергоэффективности силовых трансформаторов является оптимизация энергетической эффективности трансформаторного комплекса России и его отдельных частей. Эта задача решается с помощью основного закона теории энергоэффективности силовых трансформаторов, сформулированного выше. В соответствии с этим законом оптимизация должна выполняться в два этапа.
I-й этап
Из электротехнических закономерностей определяются оптимальные параметры энергоэффективности силовых трансформаторов, составляющих оптимальную структуру техноценоза.
II-й этап
Оптимизируется структура техноценоза. Выполняется номенклатурная и параметрическая оптимизация. По её результатам мы будем иметь оптимальное количество силовых трансформаторов заданных мощностей (мощность — основной видообразующий параметр).
Рис. Основные этапы общего алгоритма оптимизации параметров техноценоза
Данный алгоритм является общим для всех типов техноценозов и на его основе автором в настоящее время разрабатывается методика оптимизации энергоэффективного техноценоза «Силовые трансформаторы».
За пределами технологий
Используя Cynefin, установим связи между диаграммой конкретных технологий и методологиями управления проектами, необходимых на различных этапах проекта. Видно, что на разных стадиях проекта наряду с разными технологиями требуются и разные процессы, структуры команд, даже психологические установки и нейрофизиологические типы мышления.
На ранних стадиях проекты находятся в хаотично-сложной области. Поэтому нужны нелинейные исследования и эксперименты. Технологические инструменты и подходы здесь хорошо согласуются с нелинейным, очень быстрым итерационным процессом разработки, pre-scrum, методами экстремального программирования.
После проверки на соответствие рынку и получения MVP переходите к этапу масштабирования. В этот период продукт выигрывает от ограничений как в области технологий, так и в области менеджмента. Это scrum, последовательные короткие итерации.
В процессе разработки продукта он приобретает больше функионала, становится более сложным. У него есть определенный внутренний порядок, который необходимо сохранять и поддерживать. И в этом заключается одна из основных трудностей как в области технологий, так и в области управления проектами. С точки зрения последнего это похоже на Shape Up или Scaled Agile, как должно было быть — более длинные итерации, которые включают в себя этапы стратегического проектирования, последовательный рабочий процесс. В значительной степени так можно поддерживать и legacy-системы.
Можно свериться с другими фреймворкам с различными командными установками — исследователи, поселенцы, градостроители — и предоставить им правильные инструменты для работы.
Кроме того, мозг каждого человека работает по-разному. Существует три типа мышления, и, как правило, один из них доминирует.
- Руководящий — этот метод мышления лучше всего работает в упорядоченных и сложных областях, в рамках соответствующих процессов и с соответствующими инструментами.
- Абстрагирующийся, видящий суть — хорошее качество для сложных и иногда хаотичных областей, где существуют творчество, изобретения и инновации.
- Понимающий других, выстраиващий отношения в команде — они хорошо подходят для ролей, взаимодействующих с клиентами. Таким образом можно оценить, какая задача лучше всего подходит человеку, и назначить ему работу, в которой он наиболее эффективен.
Например, критически важные для миссии приложения были разработаны в очень гибкой среде — коммерческая программа NASA для экипажей, где конкурс выиграла SpaceX.
Это подтверждает эволюционное стремление к вершине графика.
Как уже сказано, люди действительно отказываются от попыток построить упорядоченные системы с помощью каскадных моделей и обращаются к более подходящим с точки зрения Теории сложности — строят в сложной области с использованием ограничений, аттракторов и гибких методов.
Инструмент Chaos Monkey — идеальный пример использования негативного аттрактора для большей выгоды.
Методология внедрения энергоэффективных силовых трансформаторов.
В развернутом виде эту методологию можно представить как совокупность следующих последовательных действий:
- Обследование всего установленного парка силовых трансформаторов в аспекте оценки оптимальности этой совокупности оборудования как техноценоза.
- Оценка остаточного ресурса всех функционирующих трансформаторов.
- Расчет параметров энергоэффективности всех трансформаторов и оптимизация техноценоза «Силовые трансформаторы» в масштабах выбранного территориального образования.
- Параллельная разработка законодательной и нормативной базы для глобального внедрения изменений техноценоза «Силовые трансформаторы» (функциональных, номенклатурных, параметрических).
- Параллельная разработка законодательной и нормативной базы для организации производства энергоэффективных трансформаторов.
- Параллельная подготовка специалистов всех уровней для эксплуатации оборудования энергоэффективного техноценоза «Силовые трансформаторы».
Методология выбора поставщика энергоэффективных силовых трансформаторов.
Методология выбора поставщика энергоэффективных силовых трансформаторов включает пять основных положений:
- Формирование оптимальных номинальных мощностей потерь хх и кз осуществляется на основании оптимального коэффициента загрузки трансформатора, который рассчитывается на основании максимального коэффициента энергоэффективности.
- Дополнительным ограничением выбора варианта поставки является срок окупаемости инвестиций в энергоэффективные трансформаторы.
- В процедуру выбора поставщика обязательно должен включаться анализ перечня проводимых на заводе-изготовителе испытаний трансформаторов.
Только реализация в полном объеме предлагаемой методики выбора поставщика энергоэффективного оборудования обеспечит выполнение техноценозом «Силовые трансформаторы» своей целевой функции по обеспечению объектов качественным и надежным электроснабжением.
Здесь показан первый интересный паттерн высокого уровня: линии эволюции фреймворка сонаправлены внутри кластеров элементов и указывают на одну и ту же область — верхний правый угол. Вернемся к этому позже.
Еще один интересный паттерн — четкие кластеры в верхнем левом и нижнем правом углах и полоса посередине. Давайте выясним, почему так.
Рассмотрим участвующие эволюционные силы как третий набор паттернов высокого уровня:
Красные линии — ограничивающие функции.
Верхняя — предел применимости энергоэффективных (простых) инструментов для комплексных решений. Действительно, легко подобрать очень энергоэффективные инструменты, например, Excel или shell, но эти инструменты нельзя использовать для создания больших, сложных приложений. Чем более совершенное и сложное решение требуется, тем более сложные (менее энергоэффективные с точки зрения человеческого мозга) нужны инструменты.
Правая красная линия обозначает предел когнитивной нагрузки. Чем мощнее и, соответственно, сложнее становятся инструменты — тем менее энергоэффективной становится когнитивная нагрузка, которую они создают для мозга. Вплоть до тех пор, пока они не окажутся непригодными для промышленного применения.
Красные линии и желтые стрелки показывают направление эволюции разработки ПО. Заметен изгиб между красными линиями, и для перехода в верхний правый угол потребуется фазовый сдвиг. Также ожидается, что существующие элементы могут находиться за линиями из-за вероятностной, подобно квантам, природы абстракции системы, с которой мы имеем дело. Однако статистически значимый эффект не возникнет.
И обратите внимание, что нижний правый кластер не бесполезен. Это источник идей, которые перенимаются другими кластеры.
Предпосылки
Разработка программного обеспечения — решение бизнес-задач через построение сложных программных систем. Это такая же система, как в Теории систем — состоящая из многих подсистем, взаимодействующая с другими системами и окружающей средой.
Давайте применим научное мышление: разберемся, о чем речь, и представим, чего ожидать. Мы используем идеи из эволюционной биологии, теории сложности, теории хаоса, теории систем, нейрофизиологии, антропологии, термодинамики и, в некоторой степени, квантовой физики.
Видимо, два самых важных параметра разработки ПО сформулировал Алан Кей. Это человеческие усилия и технологическая сложность:
Усилия человека измеримы с точки зрения энергоэффективности: чем проще использовать инструмент и достигать результатов, тем более энергоэффективным этот инструмент является. Кроме того, энергоэффективность — один из ключевых факторов эволюции, как мы увидим позже.
С технологической сложностью помогает справиться мощность технологии. Чем сложнее решения, которые нужно построить, тем выразительнее должна быть используемая технология. Сложность системы вынуждает использовать более мощные инструменты при реализации.
Давайте сравним существующие технологии на основе двух описанных выше параметров.
Вертикальная ось — энергоэффективность разработчика с заданной технологией, от низкой к высокой.
Горизонтальная ось — выразительная мощность технологии, также от низкой к высокой.
И следует помнить, что в системе гораздо больше параметров, которые мы не учитываем или просто не знаем. Поэтому положения элементов на графике не являются точными и детерминированными. Скорее, это наиболее вероятные места для элементов-показателей. Вполне возможно, что некоторые элементы могут быть расположены в каком-то другом месте на графике.
Основные технологии, используемые при разработке программного обеспечения – языки программирования и фреймворки. Фреймворки – интересный случай, поскольку они эволюционируют с целью изменения языков под нужды реального мира. Линии между элементами показывают наиболее интересные эволюционные связи.
Практическое применение теории энергоэффективности силовых трансформаторов
Конвенционально можно рассматривать совокупности всех установленных и функционирующих трансформаторов в рамках административного региона, в рамках региональной сетевой компании, в рамках РФ. Основным видообразующим параметром, описывающим техноценоз «Силовые трансформаторы» является мощность трансформатора. Конструктивные особенности трансформаторов не рассматриваются.
Формализованное описание техноценоза «Силовые трансформаторы» составляется следующим образом:
- формируются «виды» — группы трансформаторов одинаковой мощности;
- этим видам присваивается порядковый номер — ранг; наименьший, первый ранг имеет группа трансформаторов наибольшей численности, наибольший ранг — группа трансформаторов наименьшей численности.
Параметр называется константой распределения и определяет количество трансформаторов наименьшей мощности и наибольшей численности; это «вид», которому присваивается первый порядковый номер (первый ранг).
- β — характеристический показатель ранговидового распределения.
- ri — ранг (порядковый номер) каждого «вида» (каждой мощности) трансформаторов.
- Ni — количество трансформаторов ранга (порядкового номера) i.
Как предполагает автор — это число имеет фундаментальное значение для электрораспределительных сетей и отражает их сложившуюся структуру, как отдельного самостоятельного экономического региона, так и страны в целом. Но при этом вопрос об оптимальности структуры данного техноценоза остается открытым.
Зависимость (1) применена автором для создания методологии прогнозирования динамики изменения объема техноценоза. В основу методологии положены следующие гипотезы:
- Рост электропотребления взаимно-однозначно связан с увеличением объема установленной трансформаторной мощности, т.к. электроэнергия может поступить к потребителю только после преобразования в силовом трансформаторе.
- Количество вновь устанавливаемых трансформаторов каждого вида (каждой мощности) подчиняется зависимости (1).
- Количество вновь устанавливаемых трансформаторов ранга 1 (наименьшей мощности, наибольшего количества) определяется из очевидного уравнения (W — суммарное увеличение установленной трансформаторной мощности, Ni — количество трансформаторов мощности Wi ранга i):
в котором величину Ni можно заменить по формуле (1). Тогда мы получаем следующую формулу для вычисления величины N1:
N1=W/Σ(Wi/riβ ) — формула 3
Данные расчета увеличения объема техноценоза «Силовые трансформаторы» в России в 2020 году
При росте электропотребления в России в 2018 году на уровне 1 055,6 млрд кВт⋅ч и с учетом замены 5 % от объема уже установленных и работающих силовых трансформаторов, количество установленных трансформаторов мощностью 25 кВА — 6300 кВА увеличится почти на 73 000 штук.
Потенциал энергосбережения в России за счет замены обычных силовых трансформаторов I — III габарита на энергоэффективные.
Для расчета электротехнического эффекта (сэкономленной мощности) и финансового эффекта (стоимости сэкономленной мощности) сначала была выполнена оценка общего количества всех установленных в России силовых трансформаторов I — III габарита (мощностью от 25 кВА до 6300 кВА). Расчет выполнялся на основе модели, описываемой формулами (1) — (3). Количество установленных и функционирующих силовых трансформаторов указанного диапазона мощностей составляет ~2,6 миллиона штук. Электротехнический и экономический эффекты оценивались в предположении, что замена всех обычных трансформаторов произведена на трансформаторы класса энергоэффективности Х2К2 в соответствии с отраслевым стандартом СТО 34. 01-3. 2-011-2017.
Подробные результаты расчетов
Суммарные потери в трансформаторах мощностью 25 кВА — 6300 кВА при загрузке 100 % в финансовом выражении (при условии, что цена электроэнергии в среднем составляет 5 руб. /кВт⋅ч), могут составить~400 млрд. руб. в год. Это составляет 2,2 % объема расходов госбюджета РФ на 2019 год. При замене всех установленных трансформаторов на энергосберегающие класса энергоэффективности Х2К2 ежегодная экономия за счет сокращения потерь в трансформаторах может равняться ~50 млрд руб. Это равноценно примерно 0,25 % доходов госбюджета РФ на 2019 год. Насколько эта сумма велика или мала? Для сравнения — расходная часть бюджета на 2019 города Екатеринбург с населением 1 483 119 человек составляет 49,6 миллиарда рублей.
Будущее
Теперь обратим внимание на верхний правый угол диаграммы. Там ничего нет. Это место для будущих технологий разработки программного обеспечения. По диаграмме можно предсказать, какими свойствами должны обладать эти будущие решения.
Логично предположить, что они должны учитывать различные области сложности в эволюции продуктов. Можно ожидать целый спектр инструментов, а не одно универсальное решение.
Видно, что эти инструменты должны пересекать границы ограничивающих функций — стать более продвинутыми, чем человеческая когнитивная способность, и более энергоэффективными, чем современные решения. Энергоэффективность означает автоматизацию, а снижение когнитивной нагрузки — что машины должны стать более компетентными. Пересечение данных линий — также фазовый сдвиг, поэтому для создания таких технологий потребуется много энергии. Можно предположить, что такие решения потребуют много энергии для работы, потому что сложные вещи с простым интерфейсом означают уменьшение местной энтропии. А поскольку энтропия никогда не уменьшается, мы должны ожидать увеличения глобальной энтропии — то есть потребления энергии.
Пересечение пределов энергоэффективности и сложности означает, что программирование становится товаром — не только разработчик, а любой человек может взять и применить такой инструмент, решить задачу и получить приложение.
Как упоминалось ранее, управление сложностью происходит при помощи ограничений, правил и аттракторов. Можно ожидать, что будущие инструменты будут ограничены в зависимости от доменной области и смогут выводить автоматические ограничения — возможно, из совокупности знаний о домене.
Автоматические ограничения означают специфические для домена или задачи тесты и универсальные стандартные архитектурные элементы. В более продвинутых приложениях можно ожидать, что локальные типы автоматически выйдут из совокупности знаний домена и локального логического контекста.
Один из примеров — что-то похожее на сервис Amazon Lambda. Он усердно работает над повышением энергоэффективности и скрывает большую часть существенной сложности, но создает свою собственную сложность и не решает бизнес-задач. Потребуется библиотека универсальных архитектурных элементов и автоматическое решение для их объединения вокруг аттрактора — описания проблемы, которую необходимо решить.
Еще один пример — система искусственного интеллекта Github Copilot, который анонсировали сразу после публикации первого черновика этой статьи, буквально в тот же день. Довольно смелый подход — изготовление ИИ для написания кода на уровне функции на основе шаблона, например, имени функции или содержания комментариев. Насколько я понимаю, в настоящее время он работает на уровне оператора (слова), не понимая семантические объекты из кода. Но даже так это выглядит впечатляюще. Он решает проблему ограничения энергоэффективности, автоматически генерируя фрагменты кода, который на графике находится рядом с автодополнением в интегрированной среде разработки. Для начала просто отлично!
В самых экстремальных случаях и в отдаленном будущем нам, вероятно, следует ожидать чего-то вроде «слабых ИИ общего назначения, специфичных для конкретной области».
Хуже — лучше
Еще один ответ, который мы получим — почему хуже значит лучше.
Энергоэффективность — один из основных факторов эволюции, и мы видим, что наиболее энергоэффективные инструменты находятся в верхней части их конкретных зон.
Энтропия — возникающее, высшее свойство систем, которое подтверждается всеми действующими законами.
В нашей системе законы — энергоэффективность и стремление к росту сложности. Данные силы формируют общую картину. Один из способов определения энтропии в данной системе — мера беспорядка в пределах того, что разрешено законами.
Тот факт, что желтые и синие точки распределены почти равномерно и в рамках существующих кластеров, точно соответствует ожидаемому результату. Это наблюдение намекает на то, что энтропия играет свою роль.
Энтропия, в свою очередь, необходима для эволюции, и мы наблюдаем эволюцию на еще более высоком уровне. Это указывает на энтропийную природу системы.
Более глубокие источники энтропии носят информационный характер, связанный с объемом скрытой информации в квантовых запутанных состояниях, как их понимают в настоящее время в физике.
Наша система проявляет некоторые квантовые свойства, и мне кажется, что истоки ее энтропии прослеживаются до квантовой энтропии. Но это материал для совершенно другой статьи.
Действительно, заметно, что синие, желтые и белые элементы равномерно распределены по диаграмме:
Правильный инструмент для работы
Теперь понятно, как различные технологии обеспечивают необходимые свойства для стадий эволюции продукта. Данная диаграмма направляет нас в выборе технологий, дает представление о вековом вопросе: «Что значит “правильный инструмент для работы”»?
Во время эволюции продукта нужны различные способы решения проблемы управления сложностью:
- Сначала нужен быстрый успех, никаких ограничений для инструментов первоначального исследования и моделирования. Понятно, что не требуется писать тесты в данной зоне.
- Затем — инструменты, которые предоставят возможности ограничения для быстрого экспериментирования -: линтеры, код-конвенции модульные тесты.
- Затем — направляющие ограничения, чтобы масштабировать продукт быстро и без нарушения отдельных элементов. Большинство продуктов стремится остаться в этой зоне.
- В редких случаях нужно, чтобы у продукта были детерминированные свойства, чтобы он был полностью упорядоченной системой — есть инструменты и для этого.
Но изменить язык программирования и фреймворк в течение срока службы продукта непросто. Поэтому мы хотим найти способы решения проблем изменения сложности продукта, не преобразуя его каждый раз с нуля. И на диаграмме есть ответы на этот вопрос!
Первый очевидный ответ — технологический стек, который позволит добавлять и изменять ограничения и аттракторы на лету. Некоторые инструменты на диаграмме именно для этого, например, переход Javascript->Typescript или другие примеры динамических типов.
Менее очевидный ответ — архитектура. Хорошая архитектура перемещает каждый элемент, к которому она применяется, вправо и вверх. Архитектура — катализатор эволюции. С другой стороны, плохая архитектура легко переместит элемент влево или вниз. По диаграмме можно оценить и проверить предлагаемую архитектуру:
Эта структура применима не только к разработке ПО, но и к любой другой области аналогичной структуры.
Список литературы
- Данилов Н. И., Лисиенко В.Г., Щелоков Я. М. «Проблемы стратегии и теории энергоэффективности». Экономика региона. 2006 год, № 4 (8). — с. 78–87.
- Кудрин Б.И. «Два открытия: явление инвариантности структуры техноценозов и закон информационного отбора». Технетика. 2009 год. Стр. 82.
- Савинцев Ю.М. «Надежный поставщик — ключ к безаварийности и энергоэффективности». Энергетика и промышленность России. 2019 год, № 09 (365). — с. 40–41.
- Савинцев Ю.М. «Сухие энергоэффективные трансформаторы: кто в тренде?». Энергетика и промышленность России. 2019 год, № 13-14 (369-370). — с. 40–41
- Савинцев Ю.М. «Монетизация» энергоэффективности в трансформаторостроении». Энергетика и промышленность России. 2019 год, № 05 (361). — с. 40–41.
Выводы
В статье последовательно изложена онтология актуальной новой прикладной научной дисциплины — теории энергоэффективности силовых трансформаторов.
Описанные практические приложения теории обеспечивают решение широкого спектра задач повышения энергоэффективности электросетевого комплекса России.