Как работает генератор энергии

Как работает генератор энергии Энергоэффективность

Чем отличается инверторный  генератор от обычного бензинового генератора?

Инверторный генератор сильно отличается от того, что многие считают обычным портативным генератором.

Несмотря на свои ключевые отличия, инверторные генераторы часто встречаются в списках «Лучшие портативные генераторы». Это связано с тем, что большинство инверторных генераторов легче переносить, чем более крупные генераторы большой мощности.

Разница между инверторным генератором и обычным

Есть плюсы и минусы для обоих типов генераторов. Какие преимущества перевешивают, какие недостатки зависят от того, для чего будет использоваться генератор.

Читайте дальше, чтобы узнать разницу между инверторным генератором и обычным портативным генератором. Это поможет вам решить, какой тип генератора лучше подходит для ваших нужд.

Что считается обычным портативным генератором?

Говоря о портативном генераторе, люди обычно имеют в виду мобильные бензиновые или дизельный генераторы. Это наиболее часто покупаемые товары.

Обычный переносной генератор в основном представляет собой двигатель на топливе с генератором переменного тока, который имеет электрическую мощность. Три наиболее распространенных вида топлива, используемых для переносных генераторов, — это бензин, дизельное топливо и пропан.

Некоторые портативные генераторы являются гибридами. Это означает, что двигатель может работать на нескольких видах топлива — обычно это комбинация бензина и пропана.

Частота вращения коленчатого вала двигателя и соответствующая электрическая мощность являются ключевой характеристикой обычного портативного генератора. Обычный переносной генератор на топливе рассчитан на 3600 об / мин, чтобы генерировать 120 вольт и частоту 60 герц.

Чем отличается инверторный  генератор от бензинового генератора

Тем не менее, один из главных недостатков большинства переносных генераторов, работающих на топливе, заключается в том, что машина не может поддерживать стабильные 3600 об / мин.

Постоянные изменения электрической мощности или высокие колебания — вот почему портативные генераторы на топливе не обеспечивают то, что называется «чистым электричеством».

Чистая энергия предпочтительна для чувствительных электрических устройств, таких как ноутбуки, камеры, мобильные телефоны и т. д. Неспособность удерживать постоянное напряжение при 3600 об / мин также является причиной того, что портативные генераторы на топливе так шумны.

В переносных генераторах, работающих на топливе, существует взаимосвязь между его топливным баком, мощностью и временем работы. В большинстве случаев, чем больше топливный бак, тем больше мощность и больше время работы.

Поскольку некоторые портативные генераторы могут вырабатывать более 10000 Вт энергии, вы можете себе представить, что это довольно большие и тяжелые генераторы. Несмотря на свои размеры и вес, большинство моделей по-прежнему портативны — большинство обычных моделей портативных генераторов имеют колеса и ручку.

Как работает инверторный генератор?

Механика инверторных генераторов несколько сложнее, чем у обычных переносных генераторов. Для получения конечной электрической мощности требуется больше деталей.

Многие инверторные генераторы также работают на бензине. В дополнение к потреблению энергии из топливного бака, инверторные генераторы также имеют аккумулятор, генератор переменного тока и инвертор.

Мощность от двигателя представляет собой высокочастотный переменный ток, который затем преобразуется в постоянный ток генератором переменного тока. Этот постоянный ток затем преобразуется инвертором обратно в переменный ток.

Как работает инверторный генератор

Как и в случае с обычными портативными генераторами, инверторные генераторы также имеют выходную мощность 120 В при частоте 60 Гц. Однако из-за дополнительных этапов производства электроэнергии ток инверторного генератора намного более стабилен.

Другими словами, меньше гармонических искажений, поэтому говорят, что инверторные генераторы производят «чистое электричество». Качество электроэнергии, производимой инверторными генераторами, сопоставимо с качеством электроэнергии, в домашней сети.

Чистое электричество возможно из-за двух факторов. Первый фактор заключается в том, что начальный переменный ток в инверторном генераторе находится на высокой частоте, что дает больше электрической энергии.

Вторым фактором является инверсия постоянного тока обратно в переменный ток. Механика инверторного генератора лучше контролирует частоту переменного тока, что позволяет ему обеспечивать очень стабильную синусоидальную волну.

Повышенный контроль над электрической мощностью делает инверторные генераторы весьма энергоэффективными. Он может регулировать свое напряжение в соответствии с потребностями подключенной нагрузки, сохраняя при этом скорость вращения 3600 об / мин.

различия между инверторным генератором и обычным генератором

Стабильный ток также является одной из основных причин, по которой инверторные генераторы работают бесшумно по сравнению с обычными переносными генераторами.

Каковы основные различия между инверторным генератором и обычным портативным генератором?

Ниже приведен обзор основных отличий между обычными портативными генераторами и инверторными генераторами. Обратите внимание, что существуют механические различия и вторичные различия, которые являются результатом механических различий.

Другими словами, разница в том, как работают обычные переносные генераторы на топливе и как работает инверторный генератор, дает разные возможности в конструкции и использовании.

РАЗНИЦА № 1: Техническая

Основное техническое различие между инверторными генераторами и обычными генераторами заключается в том, какой вид электроэнергии производится. Обычные генераторы вырабатывают электроэнергию переменного тока, а инверторный генератор вырабатывает электроэнергию в 3 фазы (высокочастотный переменный ток до постоянного тока переменного тока).

Стабильная синусоида — это то, что делает инверторные генераторы такими уникальными: это считается «чистым источником электричества». Это означает, что гармонические искажения минимальны, и поэтому является более безопасным источником энергии для чувствительной электроники, такой как мобильный телефон, планшет или ноутбук.

Для сравнения, обычный портативный генератор имеет гораздо более грязную синусоидальную волну, которая вызывает больше гармонических искажений. Хотя он по-прежнему является подходящим источником питания для многих электрических приборов, более чувствительные персональные устройства, имеющие микропроцессоры, могут быть повреждены, но этот тип тока.

РАЗНИЦА № 2: МОЩНОСТЬ И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ТОПЛИВА

Обычные портативные генераторы способны производить больше энергии, чем инверторные генераторы. Это связано с рядом факторов, включая размер топливного бака и механические различия в производстве электроэнергии.

Какой генератор выбрать

Инверторные генераторы более энергоэффективны благодаря тому, как вырабатывается конечный переменный ток. Двигатель инверторного генератора автоматически подстраивается под нагрузку, которую не может сделать обычный портативный генератор.

Большая топливная эффективность инверторных генераторов позволяет уменьшить топливные баки. Большая энергоэффективность означает, что для аналогичного времени работы требуется меньше топлива, поэтому топливный бак также может быть меньше.

Обычные генераторы не так экономичны, поэтому имеют тенденцию быть более объемными из-за большего топливного бака. Тем не менее, этот больший топливный бак позволяет увеличить выходную мощность.

Разница в мощности часто является решающим фактором между инверторным генератором и обычным генератором. Там, где генераторы инвертора имеют среднюю мощность от 1200 Вт до 4000 Вт, обычные портативные генераторы могут достигать более 10000 Вт.

РАЗНИЦА № 3: МОБИЛЬНОСТЬ

Генераторы инвертора, как правило, более портативны, чем обычные генераторы на топливе. Это опять-таки связано с количеством энергии, которую они производят.

Обычные топливные генераторы, которые вырабатывают больше энергии, имеют большой топливный бак и больший двигатель, поэтому для размещения машины требуется больше материала. Вот почему обычные портативные генераторы больше и тяжелее, чем инверторные генераторы.

Для того, чтобы по-прежнему быть переносными, более крупные обычные генераторы, как правило, имеют колеса и ручки для тяги. Тем не менее, это может быть довольно сложной задачей, поскольку многие портативные генераторы все еще весят более 200 кг.

Инверторные генераторы меньше, потому что их топливный бак меньше, и им не нужен такой большой двигатель, так как выходная мощность. Это снижает вес, так как инверторные генераторы часто достаточно легки, чтобы их можно было переносить с помощью ручки.

Как выбрать генератор

Большинство инверторных генераторов весят менее 45 кг. Обычно инверторный генератор весит всего около 20 -25 кг.

РАЗНИЦА № 4: ШУМ

Обычные портативные генераторы печально известны своим шумом. Это связано с его механикой, поэтому даже при минимизации шума обычные генераторы на топливе остаются шумными.

Для сравнения, технология, используемая в инверторных генераторах, позволяет им работать тише. Инверторные генераторы работают с постоянной скоростью 3600 об./ мин., что устраняет большую часть шума.

Сколько шума производит генератор, обычно указывается в описании продукта. Большинство производителей упомянут количество децибел, которые генератор производит при половине или четверти нагрузки.

Многие инверторные генераторы производят около 54 — 58 децибел шума. Это намного тише, чем в большинстве обычных генераторов, которые производят 64 децибела или более.

РАЗНИЦА № 5: ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

Производители пытаются компенсировать меньшую выходную мощность инверторных генераторов, устанавливая параллельное соединение. При параллельном соединении можно подключить два отдельных инверторных генератора (одной и той же модели), чтобы обеспечить удвоенное количество энергии.

В настоящее время обычные портативные генераторы не предлагают параллельное соединение. Учитывая, что они уже более мощные и менее портативные, это не удивительно.

РАЗНИЦА № 6: ЦЕНА

Как правило, обычные портативные генераторы дешевле купить, чем инверторные генераторы. Обычные портативные генераторы являются наиболее доступным вариантом, особенно когда требуется много энергии.

Инверторный генератор против обычного

Причина, по которой инверторные генераторы стоят дороже, заключается в том, что они работают по более новой технологии и имеют много дополнительных преимуществ, таких как более тихая работа, более высокая эффективность использования топлива и выработка электрического тока с минимальными гармоническими искажениями. Обычные портативные генераторы являются довольно простыми машинами и доступны дольше, что является основной причиной того, что производители могут предложить более низкую цену.

Когда выбрать инверторный генератор

В преимуществе инверторных генераторов по сравнению с обычными портативными генераторами является то, что они более тихими, более компактными и легкими, более экономичным, являются безопасными для чувствительных электрических устройств и  как правило, более экологически чистые. Недостаток инверторного генератора заключается в том, что он обычно дороже, чем аналогичный обычный генератор, и меньше по мощности.

Целью данной работы является выяснение энергетических особенностей сверхединичных синхронных генераторов на постоянных магнитах, и, в частности, влияние тока нагрузки, создающего размагничивающее поле (реакцию якоря), на нагрузочную характеристику таких генераторов. Испытанию подвергались два дисковых синхронных генератора различной мощности и конструкции. Первый генератор представлен малым синхронным дисковым генератором с одним магнитным диском диаметром 6 дюймов, с шестью парами полюсов, и обмоточным диском с двенадцатью обмотками. Этот генератор изображен на испытательном стенде (Фото №1), и его полные испытания описаны в моей статье под названием : ,,Экспериментальные исследования энергетической эффективности получения электрической энергии из магнитного поля постоянных магнитов». Второй генератор представлен большим дисковым генератором с двумя магнитными дисками диаметром 14 дюймов, с пятью парами полюсов, и обмоточным диском с десятью обмотками. Этот генератор еще не был комплексно испытан, и изображен на фото №3, самостоятельной электрической машиной, рядом с испытательным стендом маленького генератора. Вращение этого генератора производилось двигателем постоянного тока, установленным на его корпусе.
Выходные переменные напряжения генераторов выпрямлялись, сглаживались конденсаторами большой емкости, и измерение токов и напряжений в обеих генераторах производилось на постоянном токе цифровыми мультиметрами типа DT9205A.Для малого генератора измерения производились на стандартной частоте переменного тока в 60Гц, что для малого генератора соответствовало 600 об/мин. Для малого генератора измерения также производились и на кратной частоте в 120 Гц, что соответствовало 1200 об/мин. Нагрузка в обеих генераторах была чисто активной. В маленьком генераторе с одним магнитным диском магнитная цепь была разомкнута, а воздушный зазор между ротором и статором составлял около 1 мм. В большом генераторе, с двумя магнитными дисками, магнитная цепь была замкнута, а обмотки помещались в воздушном зазоре 12 мм.
При описании физических процессов в обеих генераторах, аксиомой является то, что у постоянных магнитов магнитное поле неизменно, и его нельзя ни уменьшить, ни увеличить. Это важно учитывать при анализе характера внешних характеристик этих генераторов. Поэтому в качестве переменной будем рассматривать только изменяющееся размагничивающее поле нагрузочных обмоток генераторов. Внешняя характеристика маленького генератора, при частоте 60 Гц, приведена на рис.1, на котором также изображена кривая выходной мощности генератора Рген, и кривая КПЭ. Характер кривой внешней характеристики генератора может быть объяснен, исходя из следующих соображений — если величина магнитного поля на поверхности полюсов магнитов и неизменна, то по мере удаления от этой поверхности она уменьшается, и, находясь вне тела магнита, может изменяться. При малых токах нагрузки поле нагрузочных обмоток генератора взаимодействует с ослабленной, рассеяной частью поля магнитов и сильно уменьшает его. В результате их общее поле сильно уменьшается, и выходное напряжение резко падает по параболе, поскольку мощность размагничивающего тока пропорциональка его квадрату. Это подтверждает и картина магнитного поля магнита и обмотки, полученная с помощью железных опилок. На фото №1 видна картина только самого магнита, и четко видно, что силовые линии поля сосредоточены у полюсов, в виде сгустков опилок. Ближе к центру магнита, где поле вообще нулевое, поле сильно ослабевает, так, что не может даже сдвинуть опилки. Вот это ослабленное поле и обнуляет реакция якоря обмотки, при малом токе в 0,1А, как это видно на фото №2. С дальнейшим увеличением тока нагрузки уменьшаются и более сильные поля магнита, находящиеся ближе к их полюсам, но уменьшать дальше, все возрастающее поле магнита, обмотка не может, и кривая внешней характеристики генератора постепенно выпрямляется, и превращается в прямую зависимости выходного напряжения генератора от тока нагрузки. Причем на этой линейной части нагрузочной характеристики, напряжения под нагрузкой уменьшаются меньше чем на нелинейной, и внешняя характеристика становится жеще. Она приближается к характеристике обычного синхронного генератора, но с меньшим начальным напряжением. В промышленных синхронных генераторах допускается до 30% падения напряжения под номинальной нагрузкой. Посмотрим же какие проценты падения напряжения у маленького генератора при 600 и 1200 об/мин. При 600 оборотах, напряжение его холостого хода составляло 26 Вольт, а под током нагрузки в 4 Ампера, упало до 9 Вольт, тоесть уменьшилось на 96,4% — это очень высокое падение напряжения, более чем в три раза превашающее норму. При 1200 оборотах, напряжение холостого хода стало уже 53,5 Вольт, а под тем-же током нагрузки в 4 Ампера, упало до 28 Вольт, тоесть уменьшилось уже на 47,2% — это уже ближе к допустимым 30%. Однако рассмотрим численные изменения жесткости внешней характеристики этого генератора в широком диапазоне нагрузок. Жесткость нагрузочной характеристики генератора определяется скоростью падения выходного напряжения под нагрузкой, поэтому просчитаем её, начиная от напряжения холостого хода генератора. Резкий и нелинейный спад этого напряжения наблюдается примерно до тока в один Ампер, и наиболее ярко выражен до тока в 0,5 Ампера. Так, при токе нагрузки в 0,1 Ампера, напряжение равно 23 Вольта и падает, по сравнению с напряжением холостого хода в 25 Вольт, на 2 Вольта, тоесть скорость падения напряжения составляет 20 В/A. При токе нагрузки в 1.0 Ампера напряжение уже равно 18 Вольт, и падает на 7 Вольт, по сравнению с напряжением холостого хода, тоесть скорость падения напряжения составляет уже 7 В/А, тоесть она уменьшилась в 2,8 раза. Такое повышение жесткости внешней характеристики продолжается и при дальнейшем увеличении нагрузки генератора. Так, при токе нагрузки в 1.7 Ампера, напряжение падает с 18 Вольт до 15,5 Вольт, тоесть скорость падения напряжения составляет уже 3,57 В/А, а при токе нагрузки в 4 Ампера, напряжение с 15,5 Вольт падает до 9 Вольт, тоесть скорость падения напряжения уменьшается до 2,8 В/А. Такой процесс сопровождается и постоянным увеличением выходной мощности генератора (Рис. 1), при одновременном повышением жесткости его внешней характеристики. Повышение выходной мощности, при этих 600 об/мин, обеспечивает при этом и достаточно высокий КПЭ генератора в 3,8 единиц. Аналогичные процессы происходят и при двойной синхронной скорости генератора (Рис. 2), тоже сильное квадратурное снижение выходного напряжения при малых токах нагрузки, с дальнейшим повышением жесткости его внешней характеристики с увеличением нагрузки, отличия только в численных значениях. Возьмем только два крайних случая нагрузки генератора — минимального и максимального токов. Так при минимальном токе нагрузки в 0,08 А, напряжение равно 49,4 В, и падает, по сравнению с напряжением в 53,5 В на 4,1 В. Тоесть скорость падения напряжения составляет 51,25 В/А, и более чем в два раза превышает эту скорость при 600 об/мин. При максимальном токе нагрузки в 3,83 А, напряжение уже равно 28,4 В, и падает, по сравнению с 42 В при токе в 1,0 А, на 13,6 В. Тоесть скорость падения напряжения составила 4,8 В/А, и в 1,7 раза превышает эту скорость при 600 об/мин. Из этого можно сделать вывод, что увеличение скорости вращения генератора значительно снижает жесткость его внешней характеристики на её начальном участке, но не значительно снижает её на линейном участке его нагрузочной характеристики. Характерно, что при этом, при полной нагрузке генератора в 4 Ампера, процентное падение напряжения оказывается при этом меньше чем при 600 оборотах. Это объясняется тем, что выходная мощность генератора пропорциональна квадрату генерируемого напряжения, тоесть оборотам ротора, а мощность размагничивающего тока пропорциональна квадрату тока нагрузки. Поэтому при номинальной, полной нагрузке генератора размагничивающая мощность, по отношению к выходной, оказывается меньше, и прцентное падение напряжения снижается. Главной положительной особенностью более высокой скорости вращения маленького генератора является существенное повышение его КПЭ. При 1200 об/мин КПЭ генератора увеличился, с 3,8 единиц при 600 об/мин, до 5,08 единиц.
Большой генератор концептуально имеет иную конструкцию, основанную на применении второго закона Кирхгофа в магнитных цепях. Этот закон гласит, что если в магнитной цепи имеются два, или несколько источников МДС (в виде постоянных магнитов), то в магнитном контуре эти МДС алгебраически суммируются. Поэтому, если мы возьмем два одинаковых магнита, и одни их разноименные полюса соеденим магнитопроводом, то в воздушном зазоре других двух разноименных полюсов возникает удвоенная МДС. Этот принцип и положен в конструкцию большого генератора. Такие же плоские по форме обмотки, как и в магеньком генераторе, и помещены в этот образовавшийся воздушный зазор с двойной МДС. Как повлияло это на внешнюю характеристику генератора показали его испытания. Испытания этого генератора производились на стандартной частоте в 50Гц, что, так-же, как и в маленьком генераторе, соответствует 600 об/мин. Была сделана попытка сравнить внешние характеристики этих генераторов при одинаковых напряжениях их холостого хода. Для этого скорость вращения большого генератора была понижена до 108 об/мин, и его выходное напряжение понизилось до 50 Вольт, напряжения близкого к напряжению холостого хода маленького генератора при скорости вращения 1200 об/мин. Полученная таким образом внешняя характеристика большого генератора приведена на том-же рисунке №2, где изображена и внешняя характеристика маленького генератора. Сравнение этих характеристик показывает, что при таком, очень низком выходном напряжении для большого генератора, его внешняя характеристика оказывается очень мягкой, даже по сравнения не со столь жесткой внешней характеристикой маленького генератора. Поскольку оба сверединичных генератора способны к самовращению, то предстояло выяснить, что требуется для этого в их энергетических характеристиках. Поэтому проводилось и экспериментальное исследовани мощности, потребляемой приводным электродвигателем, без потребления свободной энергии от большого генератора, тоесть измерение потерь холостого хода генератора. Эти исследования проводились для двух разных передаточных отношений понижающего редуктора между валом электродвигателя и валом генератора, с целью их влияния на потребляемую мощность холостого хода генератора. Все эти измерения проводились в диапазоне от 100 до 1000 об/мин. Измерялось напряжение питания приводного электродвигателя, потребляемый им ток, и рассчитывалась мощность холостого хода генератора, при передаточных отношениях редуктора равных 3,33 и 4,0. На рис.№3 приведены графики изменений этих величин. Напряжение питания приводного электродвигателя линейно возрастало с увеличением оборотов при обеих редукторных отношениях, а потребляемый ток имел небольшую нелинейность, вазванную квадратичной зависимостью электрической составляющей мощности от тока. Механическая же составляющая потребляемой мощности, как известно, линейно зависит от скорости вращения. Замечено, что повышение передаточного отношения редуктора снижает потребляемый ток во всем диапазоне скоростей, и особенно при больших скоростях. И это естественно сказывается и на потребляемой мощности — эта мощность снижается пропорционально увеличению передаточного отношения редуктора, и в данном случае примерно на 20%. Внешняя характеристика большого генератора снималась только при передаточном отношении равном четырем, но при двух значениях оборотов — 600 (частота 50 Гц ) и 720 (частота 60 Гц ). Эти нагрузочные характеристики приведены на рис.4. Это характеристики, в отличие от характеристик маленького генератора, имеют линейный характер, с очень малым падением напряжения под нагрузкой. Так при 600 об/мин напряжение холостого хода в 188 В под током нагрузки 0,63 А упало на 1,0 В. При 720 об/мин напряжение холостого хода в 226 В под током нагрузки 0,76 А упало тоже на 1,0 В. При дальнейшем увеличении нагрузки генератора эта закономерность сохранялась, и можно считать что скорость падения напряжения составляет примерно 1 В на Ампер. Если посчитать процентное падение напряжения, то для 600 оборотов оно составляло 0,5%, а для 720 оборотов 0,4%. Это падение напряжения обусловлено только падением напряжения на активном сопротивлении цепи обмотки генератора — самой обмотки, выпрямителя и соеденительных проводов, а оно равно примерно 1,5 Ом. Размагничивающее действие генераторной обмотки под нагрузкой при этом не проявлялось, или проявлялось очень слабо при больших токах нагрузки. Это объясняется тем, что удвоенное магнитное поле, в столь узком воздушном зазоре, где и находится обмотка генератора, реакция якоря не может преодолеть, и непряжение генерируется в.этом удвоенном магнитном поле магнитов. Главной отличительной особенностью внешних характеристик большого генератора является то, что и при малых токах нагрузки они линейны, нет резких падений напряжения, как в маленьком генераторе, и это объясняется тем, что существующая реакция якоря не может проявить себя, не может преодолеть поле постоянных магнитов. Поэтому можно сделать следующие рекомендации для разработчиков генераторов СЕ на постоянных магнитах:

Читайте также:  квартплата энергоэффективность

1. Ни в каком случае не применяйте в них разомкнутых магнитных цепей, это приводит к сильному рассеиванию и недоиспользованию магнитного поля.
2. Поле рассеивания легко преодолевается реакцией якоря, что приводит к резкому смягчению внешней характеристики генератора, и невозможности снять с генератора расчетную мощность.
3. Мощность генератора вы можете удвоить, при одновременном увеличении жесткости внешней характеристики, применив в его магнитной цепи два магнита, и создав поле с удвоенной МДС.
4. В этом поле с удвоенной МДС нельзя помещать катушки с ферромагнитными сердечниками, ибо это приводит к магнитному соединению двух магнитов, и исчезновению эффекта удвоения МДС.
5. В электроприводе генератора применяйте такое передаточное отношение редуктора, которое наиболее эффективно позволит вам уменьшить потери на входе генератор на холостом ходу.
6. Рекомендую дисковую конструкцию генератора, это наиболее простая конструкция, доступная в изготовлении в домашних условиях.
7. Дисковая конструкция позволяет использовать корпус и вал с подшибниками от обычного электродвигателя.

И наконец пожелаю вам упорства и терпения в создании
реально действующего генератора.

Поставленная задача

Для обеспечения работы установки плазменной резки, заказчику требовался генератор кислорода. Срочность поставки была ключевым параметром для поддержания бесперебойного технологического процесса. Также заказчику была важна максимальная энергоэффективность генератора.

Решение

Под требования заказчика был выбран серийный генератор АВС-10К. Благодаря высокоэффективному адсорбенту, запатентованным устройствам поджима с распределением потока воздуха данный генератор обладает компактными размерами и низким потреблением энергоресурсов. Генератор был изготовлен, прошел полный цикл заводских испытаний и был отгружен заказчику в течение 14 дней.

АВС-10К

Вариант исполнения:Стационарное размещение

icon

Концентрация газа

93 +/-2%

1

Производительность

9 м3

1

Оставить заявку

Если Вас заинтересовало наше оборудование и Вы хотите получить подробную информацию

Читайте также:  тs en iso 11011 сжатый воздух энергоэффективность оценка

Обратный звонок

Оставьте заявку на обратный звонок и мы перезвоним Вам в течение 5 минут

Заказать проект

Оставьте заявку на просчет проекта и мы свяжемся с Вами для уточнения деталей

Подписаться на рассылку

Укажите свой e-mail

Спасибо за обращение в нашу компанию

Мы уже начали работу по вашей заявке

Что-то пошло не так.

Попробуйте еще раз.

Если постоянно видите эту ошибку, пожалуйста, обратитесь к администратору сайта. Мы будем очень благодарны.

Как работает генератор энергии

Продолжаем Вас знакомить с лекторами со Всероссийского фестиваля науки NAUKA 0+.

Дмитрий Агарков, кандидат физико-математических наук, заведующий Лабораторией топливных элементов МФТИ, старший научный сотрудник ИФТТ РАН.

Дмитрий расскажет о высокоэффективных, экологически чистых генераторах электрической энергии на топливных элементах. Данная тематика касается практически всех областей науки и техники, так как источники энергии нужны для питания различных объектов инфраструктуры, жилых объектов, обитаемых и не обитаемых.

Также пойдет рассказ о рекордных по эффективности генераторах электрической энергии — энергоустановках на твердооксидных топливных элементах (ТОТЭ). Эти установки выигрывают у традиционных автономных источников энергии — дизельных генераторов.

https://youtube.com/watch?v=7iwaYFrGbaI%3Ffeature%3Doembed

Свяжитесь с нами

Живой чат с представителями Tektronix. С 9:00 до 17:00 CET

Загрузить

Загрузить руководства, технические описания, программное обеспечение и т. д.:

Обратная связь

Хотите предоставить отзыв? Мы будем рады услышать ваше мнение.

Ваши отзывы, как положительные, так и отрицательные, помогают нам постоянно совершенствовать веб-сайт Tek.com. Сообщайте нам, когда сталкиваетесь с проблемами или если считаете нашу работу важной и полезной.

Сообщите свое мнение

Энергоэффективность

Чтобы обеспечить требуемые характеристики устройств, необходимо безопасное тестирование с высокой скоростью и точностью полевых МОП-транзисторов на основе Si, SiC и GaN в лабораторных условиях, а также на уровне пластины. В следующих материалах описываются проблемы тестирования, возникающие при включении в разработку силовых устройств на основе SiC и GaN, а также способы решения таких проблем. Узнайте, как свести к минимуму потери энергии и довести до максимума время работы от аккумуляторной батареи разрабатываемых устройств. Сократите время вывода на рынок новых разработок.

Тенденции в секторе энергоэффективности

Инженеры компании высказывают своё мнение о том, почему самым критически важным фактором разработки становится энергоэффективность.

«В этом году мы наблюдали переломный момент в технологиях на основе карбида кремния, которые обеспечили создание множества промышленных устройств».

Пат Хенсли, Tektronix

Подробнее

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Часто приходится снабжать удаленные объекты дорогой электроэнергией в виде дизельных и бензиновых генераторов, что достаточно затратно, поэтому возникает вопрос экономии, и возможные пути решения данного осложнения. Объектом исследования для решения этой проблемы был взят альтернативный источник генерация электроэнергии с помощью термоэлектрического преобразователя на основе элемента Пельтье (ЭП). Принцип действия, которого базируется на возникновении разности температур при протекании электрического тока.В основе работы ЭП (рис. 1) лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. По мере поглощения этой энергии происходит охлаждение места контакта полупроводников. А во время протекании тока в обратном направлении происходит нагревание места контакта, дополнительно к обычному тепловому эффекту. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Рис. 1 Строение элемента Пельтье

Достоинствами элемента Пельтье являются небольшие размеры, отсутствие шума, каких-либо движущихся частей, а также газов и жидкостей. При смене направления тока возможно, как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже установленного порога.

Недостатком ЭП является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы ЭП и продлит срок его службы.

Т.к. работа элемента Пельтье основывается на разности температур, то одним из перспективных мест для применения будут являться регионы с холодным климатом. На данных местностях для комфортной жизнедеятельности человека, как правило, имеется система отопления помещений, а, следовательно, создается необходимая разность температур. Снаружи температура может опускаться ниже 20 градусов по Цельсию, но в помещение она должна оставаться комфортной для человека. Из этого положения можно извлечь выгоду, поместив на стыке разности температур элементы Пельтье. За счет этого можно значительно снизить энергозатраты в холодное время года, получая и при необходимости запасая электроэнергию.

Но элемент Пельтье не обязательно использовать в зонах с холодным климатом, его так же можно применить в областях с гидротермальными источниками, где стык температур будет появляться от горячей воды с одной стороны и охлаждающим радиатором, с другой стороны (рис.2). За счет этой разницы можно получить неплохой запас мощности, которую можно использовать, например, для питания оборудования, эксплуатируемого для изучения этих самых источников

Рис.2 Применения элемента Пельтье в геотермической зоне

Другим местом установки автономного генератора на основе элемента Пельтье, могут быть регионы с теплым или жарким климатом, где одна сторона будет повернута к источнику тепла, например, к Солнцу, а вторая помещена в землю, с естественным или принудительным охлаждением (рис.3). Одним из примеров такого расположение может являться погреб. Также эти элементы очень удобны во время походов, так как за их счет можно зарядить смартфон на энергии костра или запитать фонарик с помощью тепла организма.

Рис.3 Элемент Пельтье в погребе

Из выше перечисленных аргументов возникает вопрос внедрения автономных генераторов электрической энергии на основе элемента Пельтье точечно в выгодные области применения. Но на данный момент их производство не сильно развито из-за нехватки большого количества потребителей, и поэтому ЭП имеют большую стоимость. Средняя цена за 1 ячейку, стандартного размера 40×40 мм, составляет 80 рублей. Но как только данным генератором заинтересуется мировое сообщество, а именно выгодоприобретатели в качестве инвесторов, их производство начнет развиваться, а цена уменьшаться, и в дальнейшем появиться разнообразные размеры ячеек.

На сегодняшний день реализуемо и выгодно использовать данный элемент в качестве компактных и переносных генераторов малой мощности. Рассмотрим мобильные устройства на основе элементов Пельтье. А именно переносное зарядное устройство для телефона и других мобильных устройств. Чем больше будет перепад температур между телом человека и окружающей средой, тем выше будет эффективность ЭП и тем меньше понадобиться элементов-ячеек, но для максимально КПД необходим перепад температур в 100 градусов по Цельсию, а один стандартный элемент-ячейка при таких условиях вырабатывает 5 В и 2 Вт мощности на холостом ходе, но при нагрузке мощность и напряжение сокращаются вдвое, из-за низкого коэффициента полезного действия. Т.к. элементы Пельтье довольно компактные их можно встроить в неподвижные области штанов, куртки и обуви. В итоге одна сторона будет нагреваться от тепла, вырабатываемым человеком, другая охлаждаться от окружающей среды. А для зарядки смартфона необходимо не менее 12 В, т.е. около шести элементов Пельтье. Средняя цена на элемент Пельтье составляет 100 рублей, итоговая стоимость составит 600 рублей, это дешевле обычных переносных зарядных устройств, которые ещё нужно зарядить перед использованием.

Следующим примером, который несложно реализуем, является установка для источника энергии в походе, как зимой, так и летом, от которой можно заряжать различные маломощные потребители, такие как телефоны, фонарики, холодильники на элементе Пельтье, а также запасать электроэнергию в аккумуляторы. Если вырабатывать энергию летом, то эффективным временным промежутком является ночное время суток, т.к. температура опускается до 10-15 градусов, от этого будет питаться сторона с меньшей температурой, а другая нагреваться от костра, который необходим для обогрева экспедиции. Другой, и более эффективный вариант, это использование данного генератора в зимний период, т.к. возможная разница температур будет существенно больше. Одна часть будет соприкасаться с костром, другая с емкостью для снега, к которой прикрепляются радиаторы с вентиляторами. Чтобы выработать мощность в 24 Вт, потребуется около 12 ЭП, кулер на 5,4 Вт, 2 алюминиевых радиатора, термопаста, умножитель напряжения, если потребуется запитать потребители с большим напряжением напряжению, и сама печка из нержавеющей стали. Экономически расчет показывает выгодность данного походного устройства, 12 элементов Пельтье за 1200 рублей (при оптовой закупке будет дешевле), кулер – 800 рублей, термопаста 600 рублей, 2 алюминиевых радиатора по 300 рублей, а для умножителя напряжения потребуется 4 диода и 4 конденсатора общей стоимостью 300 рублей. Итого 3500 рублей за походный автономный источник электроэнергии на элементах Пельтье. (рис.5). Он не занимает много места, поэтому очень удобен в походах и экспедициях. Если одного генератора будет недостаточно, есть два пути решения: — добавить ещё один генератор; — улучшить схему умножителя напряжения посредством добавления диодов и конденсаторов.

Рис. 4 Переносной генератор Пельтье

Но одним из самых эффективных и логических способов использования ЭП, является внедрение его в удаленные метеостанции, которые расположены по всему земному шару. Будь это холодный климат, где данный генератор будет намного эффективнее, либо же в областях, где температура окружающей среды не опускается ниже 15 градусов по Цельсию. Один из примеров такого использования будут являться метеостанции и другие объекты, находящиеся в Арктической зоне. Т.к. в наши дни значение Арктики многократно возрастает. Она становится местом самого пристального внимания стран и народов в качестве региона, от самочувствия которого во многом зависит климат планеты, и в качестве сокровищницы уникальной природы, и, как территория с колоссальными экономическими возможностями, с огромным экономическим потенциалом.

Читайте также:  профиль энергосбережение и энергоэффективность

Экономическая часть

Объектом исследования была выбрана метеостанция в Арктической зоне.

Для наблюдения за изменениями климата исследователю (человеку) необходимо жильё с комфортными условиями жизни, а именно: отопление и электричество. Необходимая мощность 12 кВт, включающая в себя:

Лампы – 100 Вт

Персональные компьютеры для обработки данных, полученных в результате наблюдения — 800Вт

Холодильник 200 Вт

Прожектор для ночного освещения — 300 Вт

Микроволновая печь СВЧ — 1500 Вт

Обогреватель — 1500 Вт

Электрочайник — 1500 Вт

Стиральная машина — 3000 Вт

Электроплита (2 конфорки) — 4000 Вт

Для обеспечения энергией понадобится бензиновые генератор Robin-Subaru (Россия) EB 12.0/230-SLE. Его цена составляет 213 тысяч рублей.

Его характеристики.

Производитель: Robin-Subaru (Россия);

Мощность: 12 кВт\12кВА;

Напряжение: 230 В;

Коэффициент мощности: 1 (сos φ);

Коэффициент фаз: 1;

Частота: 50 Гц;

Запуск: электростарт;

Вид топлива: бензин;

Расход топлива при нагрузке 75%: 3,8 литра;

Ёмкость топливного бака: 26 литров;

Исполнение: открытое;

Уровень шума: 74 Дб;

Преимущества генератора Robin-Subaru:

Малые размеры;

Низкая цепа (в сравнении с другими генераторами мощностью 12 кВт).

Расход генератора в час будет составлять 169,1 рубль (при нынешней цене на бензин 44,50 р за литр). Учитывая, что генератор расходует полный бак за день, можно сделать вывод , что затраты на день составят 1157 рублей.

При установке элементов Пельтье на такую же мощность, нам понадобится 6000 штук, которые будут стоить около 550000 рублей (цена указана при поштучной покупке, оптом будет дешевле). Элементы Пельтье не требуют дополнительных расходов для производства энергии, они экологичны и бесшумны. Период самоокупаемости начнётся меньше чем через год, т.к. заправлять генератор необходимо каждый день, в течении года необходимо затратить 420 тысяч, это без учёта цены на доставку бензина. И в итоге за год с генератором расход составит 633 тысячи, при элементах Пельтье 650 тысяч.

Сложностью электроснабжения объектов в Арктической зоне является отсутствие традиционных источников электрической энергии, поэтому на данный момент их замещают с помощью мобильных генераторов и электростанций, побочным эффектом которых является дорогая стоимость электроэнергии.

Рис.5 Установка ЭП в зонах Арктики и Крайнего Севера

Этот недостаток можно значительно уменьшить за счет внедрения автономных генераторов Пельтье, которые будут устанавливаться на стыке температур, в данном случае это будут стены сооружений, снаружи которых будет значительно ниже 0 градусов по Цельсию, а внутри значительно выше 0. А полученную электроэнергию для стабилизации запасать в аккумуляторные батареи (рис.4).

Таким образом, на данный момент использование элемента Пельтье экономически целесообразно только в условиях, где можно получить большой перепад температур, не приводя к дополнительным расходам. В таких зонах как Арктики, Антарктики и регионы Крайнего Севера. Либо в качестве мобильного маломощного электрогенератора, когда нужно получить электрическую энергию, не затратив на это больших ресурсов, и не имея громоздких конструкций.

Список литературы:

Арктика и Антарктика. Вып. 3 (37) / РАН, Науч. совет по изучению Арктики и Антарктики : отв. ред. В. М. Котляков. — М. : Наука, 2004. — 247 с.

Физика твердого тела Учеб. пос. / А. А. Василевский – М.: Дрофа, 2010. – 206 с.

Теория твердого тела / О.Г. Медалунг. – М.: Наука, 1980. – 418 с.

Проблема низкой энергоэффективности всей российской экономики известна. Жилищно-коммунальное хозяйство относится к такой сфере экономической деятельности, где стоимость энергетических ресурсов занимает около 80% общей себестоимости. При этом энергоэффективность инфраструктуры российского ЖКХ не выдерживает критики:

  • потери в системе теплоснабжения достигают 60%;

  • коммунальная инфраструктура российского ЖКХ представляет собой «черную дыру», где бесследно исчезают огромные энергетические ресурсы;

  • кроме того велики потери и из-за устаревших электрических сетей и осветительных приборов.

В статье речь идет о приоритетных задачах в управлении энергоэффективностью, стоящих перед российскими предприятиями сферы жилищно-коммунального хозяйства, и о возможностях применения современных информационных технологий (ИТ) в их решении.

Закон РФ «Об энергосбережении…» подвел черту под многолетними дискуссиями и убеждениями самих себя в том, что энергосбережением и повышением энергоэффективности заниматься все-таки надо.

Задача увеличения энергоэффективности для национальной экономики стала приоритетной. По данным Российского Центра по эффективному использованию энергии Российский потенциал составляет 45% полного потребления первичной энергии. При этом более 70% от общего потенциала энергосбережения страны сосредоточено в сфере приложения усилий предприятий ЖКХ.

Текущая государственная политика в области энергоэффективности и энергосбережения направлена с одной стороны, на ужесточение мер борьбы с неэффективным использованием энергетических ресурсов, с другой — на стимулирование программ повышения энергетической эффективности и энергосбережения.

Можно говорить о том, что в настоящее время законодательно закреплены основные нормативные механизмы и методы контроля и управления энергоэффективностью. Введены требования, обязательные для выполнения всеми энергоемкими предприятиями и участниками жилищно-коммунального рынка. Закон обозначил первоочередные направления повышения энергоэффективности, сроки внедрения ключевых мероприятий, формы наказаний нерадивых и поощрений стремящихся.

Отрасль жилищно-коммунального хозяйства как точка приложения основных усилий напрямую не выделена в законе. Тем не менее, практически все сферы энергосбережения, выделенные Законом, относятся непосредственно к ЖКХ. По другому и быть не может, поскольку ЖКХ напрямую обеспечивает жизнедеятельность жилищной сферы, которая составляет треть национального имущества и обеспечивает деятельность значительной доли остального имущества (промышленных предприятий, сферы услуг, объектов бюджетной сферы).

Государственная политика и законодательная поддержка по ее реализации есть. Для реального решения стоящих задач нужны технологии, методы, инструменты и наработка практики их применения.

Основные направления приложения усилий в повышении энергоэффективности

Рассмотрение технологий по созданию материалов и оборудования, обеспечивающих максимальный режим энергосбережения, новых методов проектирования и эксплуатации фондов несомненно является важным для повышения энергоэффективности ЖКХ. Поговорим об ИТ технологиях, которые обеспечивают нас информацией для организации процесса Управления энергоэффективностью.

Множество научно-производственных компаний активизировало свою работу по созданию материалов, оборудования, обеспечивающих максимальный режим энергосбережения. В производство и строительство внедряются новые методы проектирования и эксплуатации фондов. Прошла экспериментальная проверка и планируется массовое строительство жилья по технологии энергоэффективного «пассивного дома».

Строительство нового это хорошо, но не надо забывать, что основная масса жилого фонда и инженерных коммуникаций в сфере ЖКХ очень давно введены в эксплуатацию и основная масса задач по повышению энергоэффективности касается именно этого сектора.

Для создания Комплексной Системы управления энергоэффективностью необходимо решение следующих задач:

  • Учет энергоресурсов в реальном масштабе времени. Определение параметров, характеризующих состояние энергоресурсов и факторов, влияющих на эффективность управления энергоресурсами в реальном масштабе времени.

  • Контроль состояния инфраструктуры, поддерживающей процессы производства, поставки и потребления энергоресурсов в реальном масштабе времени. Определение параметров, характеризующих состояние всей энергетической инфраструктуры в целом и факторов, влияющих на эффективность управления энергоресурсами в реальном масштабе времени.

  • Использование факторов, определяющих эффективность управления энергоресурсами. Принятие решений для выполнения следующих функций:

    • подготовка планов развития энергетической инфраструктуры,

    • подготовка и реализация программ улучшения энергоэффективности,

    • подготовка и реализации программ энергосбережения,

    • управление развитием энергетической инфраструктуры.

  • Контроль исполнения принятых решений.

  • Оценка результатов по факту реализации принятых решений.

Давайте посмотрим, какие типы информационных систем должны быть применены на практике для построения комплексной системы управления энергоэффективностью и реализации вышеперечисленных задач.

Основание пирамиды — SCADA (диспетчерское управление и сбор данных)

Системы контроля потребления (сбора данных о потреблении) — нижний уровень нашей пирамиды. Работают непосредственно с приборами учета. Разнообразные средства коммуникаций позволяют проектировать и строить компактные и надежные системы централизованного сбора данных показаний с приборов учета. Эти системы создают и хранят информацию о параметрах потребляемых ресурсов и их объемах. Количество параметров, поддающихся обработке, непосредственно зависит от характеристик самих приборов учета. Мониторинг текущего состояния энергопотребления необходим. Именно он обеспечивает данными все остальные уровни комплексной системы управления энергоэффективностью.

АСКУЭ — автоматизированная система коммерческого учета электроэнергии

На рынке в настоящий момент времени представлено достаточно много систем данного класса; чаще всего их разрабатывают производители приборов учета. Поэтому их выбор диктуется тем, с какими приборами учета может работать данная система. К сожалению, следует констатировать, что пока лишь немногие системы данного класса умеют работать с разными типами счетчиков одновременно. Но развитие в этом направлении идет очень быстрыми темпами.

Переходим сразу к третьему и четвертому уровню нашей пирамиды. Рынок программных продуктов для построения учетных систем, в том числе класса ERP, и систем поддержки принятия решений достаточно широко представлен на рынке. Наиболее распространенные тиражные решения для сферы ЖКХ реализованы в программах фирмы «1С». К преимуществам этого программного обеспечения можно отнести: оптимальное сочетание цены и качества продукта, согласованность решений с российским законодательством, большое количество специалистов, знающих продукт. Всего в отраслевой линейке для ЖКХ существует более 60 тиражных решений фирмы «1С» и ее партнеров, на которых реализовано несколько тысяч проектов внедрения по всей стране.

Несколько по-другому обстоит дело со вторым уровнем пирамиды. Связано это, прежде всего, с тем, что для решения задач этого уровня необходима:

  • информация о состоянии объекта в реальном режиме времени (показании прибора, состоянии счетчика);

  • информация о состоянии расчетов, условий договоров и значениях плановых показателей из систем верхнего уровня (сроки ремонтов и поверок оборудования, нормы на выполнение работ, сроки выполнения работ в соответствии с договорами и т.п.).

В настоящий момент времени чаще всего используется технология ручного ввода сводных данных о потребленных ресурсах в системы 3-его уровня представленной пирамиды. Имеется небольшое количество внедрений уникальных (индивидуально разработанных под заказчика) систем данного уровня. Комплексная система энергоэффективности совмещает в себе функционал, имеющийся в системах уровня SCADA и ERP системах.

Программный продукт 1С:Управляющая компания ЖКХ. Модуль для 1С:ERP и 1С:КА2 — решение для автоматизации основных бизнес-процессов организаций, управляющих многоквартирными домами (МКД).

При разработке специализированной отраслевой функциональности решения был обобщен опыт создания и успешной эксплуатации автоматизированных систем на предприятиях ЖКХ:

  • осуществляющих профессиональное управление жилыми многоквартирными домами и прилегающей территорией;

  • занимающихся обслуживанием и эксплуатацией производственных зданий и сооружений, а так же других объектов нежилого фонда;

  • оказанием коммунально-эксплуатационных услуг всем категориям потребителей.

Решение предназначено для автоматизации управления и учета на предприятиях сферы ЖКХ, таких как:

  • многоотраслевые предприятия комплексного управления — Управляющие компании (УК), в том числе объединяющие несколько ТСЖ, ЖСК или ГСК;

  • жилищно-эксплуатационные управляющие компании (ЖЭУК);

  • дирекции по эксплуатации зданий (ДЭЗ);

  • ремонтно-строительные предприятия, работающие в секторе жилищных услуг для населения и организаций, находящихся в обслуживаемом фонде;

  • предприятия, оказывающие услуги по обслуживанию инфраструктуры жилищного фонда, зданий, сооружений и территорий, в т.ч. клининговые компании;

  • подразделения компании-девелопера, занимающиеся содержанием и эксплуатацией объектов недвижимости;

  • подразделения холдинговых структур, занимающиеся обслуживанием и эксплуатацией, принадлежащих холдингу жилищных фондов;

  • специализированные информационно-расчетные центры, оказывающие услуги по организации начисления и сбора платежей с потребителей и ведения расчетов с ними;

  • ресурсо-снабжающие организации, организации теплоснабжения, газоснабжения, водоснабжения и водоотведения.

Оцените статью
GISEE.ru - Официальный сайт
Добавить комментарий