Гэс аэ Энергоэффективность гэса

Показатели энергетической эффективности

Душевое потребление валового внутреннего продукта. Душевое потребление электроэнергии. Душевое потребление энергоносителей. Число часов использования установленной мощности. Расход электроэнергии на собственные нужды. Потери в сетях. Уровень технологического развития.

Обновлено: 23 апреля 2022 года

Возможны изменения и дополнения

Следующее обновление: апрель-май 2023 года

Карта показателей энергетической эффективности за 2019 год

Таблицы энергетической эффективности 1992-2019: душевого потребления валового внутреннего продукта по паритету покупательной способности (в текущих ценах); душевого потребления энергоносителей; душевого (валового) потребления электроэнергии,; душевого потребления энергоносителей; числа часов использования установленной мощности-нетто

Расходы электроэнергии на собственные нужды электростанций, потери в электрических сетях, уровни технологического развития стран за 2019 год

Основные термины, определения и понятия

(приводятся в соответствии с законодательством РФ)

Основополагающими являются понятия, используемые в Федеральном законе от 23 ноября 2009 г. № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации»

В Статье 2 указанного закона в числе основных приводятся, в частности, следующие понятия:

энергетическая эффективность — характеристики, отражающие отношение полезного эффекта от использования энергетических ресурсов к затратам энергетических ресурсов, произведенным в целях получения такого эффекта, применительно к продукции, технологическому процессу, юридическому лицу, индивидуальному предпринимателю;

класс энергетической эффективности — характеристика продукции, отражающая ее энергетическую эффективность;

В отечественной нормативной литературе приведены также следующие понятия:

Показатель энергетической эффективности — абсолютная, удельная или относительная величина потребления или потерь энергетических ресурсов для продукции любого назначения или технологического процесса.

Показатель использования установленной мощности электростанции — Отношение произведенной электростанцией электрической энергии за установленный интервал времени к установленной мощности электростанции.

Тарифы — система ценовых ставок, по которым осуществляются расчеты за электрическую энергию (мощность) и тепловую энергию (мощность), а также за соответствующие услуги,оказываемые организациями, осуществляющими регулируемую деятельность.

Полная энергоемкость продукции — Величина расхода энергии и (или) топлива на изготовление продукции, включая расход на добычу, транспортирование, переработку полезных ископаемых и производство сырья, материалов, деталей с учетом коэффициента использования сырья и материалов.

Энергоемкость производства продукции — Величина потребления энергии и (или) топлива на основные и вспомогательные технологические процессы изготовления».

Эффективное использование энергетических ресурсов — Достижение экономически оправданной эффективности использования энергетических ресурсов при существующем уровне развития техники и технологий и соблюдении требований к охране окружающей природной среды.

Под энергоемкостью и электроемкостью ВВП* понимаются соответственно величины, характеризующие потребление энергоносителей и потребление электрической энергии-нетто на единицу ВВП* и относятся к группе технологических показателей.

Вводится интегральный показатель энергетической эффективности –

Уровень технологического развития (УТР) — доля полезной электрической энергии от конечного потребления первичной энергии с учетом расхода на собственные нужды энергетического сектора и потерь. Выражается в процентах.

Гэс аэ Энергоэффективность гэса

Число часов использования установленной мощности электростанций

Показатель использования установленной мощности электростанции — Отношение произведенной электростанцией электрической энергии за установленный интервал времени к установленной мощности электростанции.

Примечание. Показатель использования обычно выражают в часах за год и этот показатель называют число часов использования установленной мощности. (ГОСТ 19431-84 «Энергетика и электрификация. Термины и определения»).

Коэффициент использования установленной мощности электроустановки — Отношение среднеарифметической мощности к установленной мощности электроустановки за установленный интервал времени (ГОСТ 19431-84).

Примечание: Коэффициент использования установленной мощности (КИУМ) выражают в %. В практике КИУМ определяют из отношения числа часов использования установленной мощности к календарному числу часов в году (8760).

В соответствии с определениями в качестве исходных используются статистические данные UNSD: производство электрической энергии-нетто и установленная мощность электростанций-нетто.

Число часов использования установленной мощности электростанций (в дальнейшем число часов использования) и тарифы на электрическую энергию, являются важнейшими показателями энергетической эффективности. В условиях возмещения затрат и обеспечения нормативной рентабельности тариф на электроэнергию определяется моделью:

Гэс аэ Энергоэффективность гэса

Гэс аэ Энергоэффективность гэса

где, α- фактические и β- базовые значения

переработанное и дополненное. , «Энергия», 1977, 464 с.

Энергетическая статистика. Макроэкономические показатели. Страны и регионы мира

2019 Крупнейшие страны ми. показателям за 2016 год

*В порядке убывания по установленной мощности-нетто электростанций

Ведущие технологические страны мира

2019. Ведущие технологиче. показателям за 2016 год

*В алфавитном порядке. Страны с душевым потреблением ВВП* свыше 40000 долларов и уровнем технологического развития свыше 20,00 процентов

Таблицы показателей энергетической эффективности

Душевое потребление валового внутреннего продукта (по паритету покупательной способности — ВВП*)

2019. Душевое потребление. 1992-2023 гг. , доллары

Страны мира. Душевое потребление ВВП* за 2019 год, долл. /чел.

2019. Душевое потребление. 2-2016 гг. , кг ‎(tce)‎/чел.

*Конечное (энергетическое) потребление органического топлива

Страны мира. Душевое потребление энергоносителей за 2019 год, кг (tce)/чел.

Душевое (валовое) потребление полезной электроэнергии

2019 Душевое ‎(валовое)‎ п. 92-2016 гг. , кВт∙ч/чел.

Душевое потребление полезной электроэнергии населением

2019. Душевое потребление. 92-2016 гг. , кВт∙ч/чел.

Страны мира. Душевое потребление полезной электроэнергии населением за 2019 год, кВт∙ч/чел.

Число часов использования установленной мощности-нетто

2019. Число часов использ. етто, 1992-2016 гг. , часы

Страны мира. Число часов использования установленной мощности-нетто за 2019 год, часы

Страны мира. Расход электроэнергии на собственные нужды электростанций за 2019 год,

проценты к производству-брутто

Страны мира. Потери электроэнергии в сетях в 2019 году, проценты к производству-нетто

Страны мира. Уровень технологического развития за 2019 год, проценты

Угроза изменения климата нависла над всей планетой и запустила мировой тренд на декарбонизацию — страны постепенно отказываются от использования традиционных нефти, газа и угля в пользу более экологичных видов топлива. Стремление снизить вредные выбросы в атмосферу дало толчок развитию возобновляемой энергетики. Россия может отхватить большой кусок пирога на зарождающемся рынке и уже прилагает к этому усилия. В стране раскрывают потенциал энергии Солнца и ветра, а также готовятся возродить позабытые, но крайне перспективные проекты советских времен. «Лента. ру» в рамках проекта «Новое общество» рассказывает о перспективах России в качестве мирового лидера в области возобновляемых источников энергии.

Глобальное потепление вынуждают большинство стран снижать вредные выбросы в атмосферу. В мире доминирует зеленая повестка — поиск и развитие альтернативных и безобидных для природы источников энергии. Последние пять лет новые мощности зеленой генерации превосходят уголь, газ и атом, а глобальные инвестиции в возобновляемые источники энергии (ВИЭ) ежегодно превышают 300 миллиардов долларов.

Тренд на декарбонизацию активно набирает обороты и в России. И тут дело не только в заботе об экологии, но и в экономической составляющей. С 2025 года в Европе собираются ввести налог на «грязные» товары — с большим углеродным следом. Сейчас на страны ЕС приходится почти половина (46 процентов) российского экспорта. Под новый налог попадут ввозимые на территорию Евросоюза товары (на первом этапе — железо, сталь, цемент и удобрения), производство которых не отвечает европейским экологическим нормам.

Еще одна причина — постепенное истощение российских запасов нефти и газа. По подсчетам Минприроды, за десять лет нефтяные запасы России сократились на треть, газовые — на 27,4 процента. По данным Счетной палаты, Россия обеспечена разведанными запасами нефти на 35 лет, газа — более чем на 50 лет. При этом потенциал открытия новых крупных месторождений в уже освоенных регионах практически исчерпан, а разведка новых неперспективна.

Власти всерьез обеспокоены перспективами нефтяного рынка. В докризисном 2019 году газ и нефтепродукты обеспечили 55 процентов всех экспортных доходов экономики — 231 миллиард долларов. В 2020-м доходы снизились до 146 миллиардов, что было ожидаемо, учитывая коронакризис. А в первом квартале 2021 года углеводороды уже обеспечили половину экспортных доходов — 44 миллиарда долларов.

Россия поддерживает глобальные усилия по сокращению парниковых газов. Уже сегодня более 80 процентов выработки электроэнергии в стране осуществляется на источниках с низкими удельными выбросами — атомных (АЭС), парогазовых и гидроэлектростанциях (ГЭС). О лидерстве России в области ВЭИ в Кремле говорят уже сейчас. «Доля энергии от АЭС, гидроэлектростанций, ветряных и солнечных электростанций превышает у нас 37 процентов», — констатировал президент Владимир Путин и добавил, что такими конкурентными преимуществами, безусловно, нужно воспользоваться. Президент отметил, что необходимо наращивать темпы реализации проектов в атомной энергетике, активно развивать малые ГЭС и использовать возможности приливов и отливов.

Минэкономразвития уже разработало проект новой стратегии низкоуглеродного развития на ближайшие десятилетия. Согласно документу, к 2050 году выбросы парниковых газов должны быть снижены на 79 процентов, а достижение полной углеродной нейтральности запланировано к 2060 году. Среди мер по снижению выбросов упоминается углеродное ценообразование (внедрение нормативов, стимулирование низкоуглеродных технологий, корректировка налога на доход полезных ископаемых (НДПИ), а также развитие зеленого финансирования. В Международном агентстве по возобновляемой энергии подсчитали, что к 2030 году доля ВИЭ в российском энергобалансе составит более 11 процентов (без учета АЭС). Стремиться есть куда: например, в Германии этот показатель уже почти достиг 47 процентов.

Большие надежды

Водородную энергетику называют ключевым элементом декарбонизации в мире, а у России отличные возможности в этом направлении.

«В свете мирового энергетического перехода большое внимание сейчас уделяется низкоуглеродным источникам энергии. И здесь водород может не только занять достойное место, но и, при соблюдении ряда условий, стать точкой роста для экономики России», — говорил вице-премьер Александр Новак. По его словам, Россия могла бы занять около 20 процентов на мировых рынках. В то же время водородный переход для мировой экономики обойдется недешево: по оценкам объединения Hydrogen Council, он потребует ежегодных инвестиций в размере 20-25 миллиардов долларов.

миллиардов долларов в год

нужно для перехода мировой экономики на водород

На водород в России возлагают большие надежды и верят, что именно он станет альтернативой традиционным источникам энергии. Спецпредставитель президента по связям с международными организациями для достижения целей устойчивого развития Анатолий Чубайс считает, что благодаря экспорту водорода наша страна сможет добиться мирового лидерства. По его словам, уже сейчас газотранспортная система может использовать до десяти процентов пропускных мощностей для поставок водорода.

Читайте также:  энергосбережение и энергоэффективность для школ

Для реализации потенциала власти разработали дорожную карту по развитию водородной энергетики до 2024 года. Первостепенная задача — разработка конкурентоспособных технологий производства водорода как из ископаемого сырья, в первую очередь природного газа, так и методом электролиза воды. Такими темпами Россия к середине века должна будет зарабатывать от экспорта экологически чистых видов водорода от 23,6 до 100,2 миллиарда долларов в год.

В зависимости от темпов декарбонизации мировой экономики и роста спроса на водород на международном рынке потенциальные объемы российского экспорта водорода оцениваются в 200 тысяч тонн в 2024 году, 2-12 миллиона тонн — в 2035 году и 15-50 миллиона тонн — в 2050 году. Однако скорость реализации амбициозных задач пока под вопросом, ведь глобальный рынок водорода еще до конца не сформировался. Основные потребители водорода на сегодняшний день — химические предприятия, производители аммиака и метанола, но в будущем использование водорода начнет набирать обороты.

Российскими первопроходцами в сфере водорода станут «Газпром», «Росатом» и НОВАТЭК. В ближайшие годы Россия готовится начать производство автобусов, поездов и кораблей на водороде, первое полноценное судно могут представить уже в 2023 году. Пионером в автомобилестроении стал премиальный Aurus. «За рулем — так же, как за серийным, где шумоизоляция хорошая и двигатель не так слышно, здесь просто отсутствие звука. Непривычно то, что едешь как в вакууме», — делился впечатлениями глава Минпромторга Денис Мантуров.

Надуло

Одним из наиболее экологичных способов добычи энергии считается использование ветроэлектростанций (ВЭС). Не зря на них приходится — почти треть всей зеленой энергии на планете. Совокупный объем установленных мощностей ветроэлектростанций (ВЭС) достигает 564 гигаватт.

Россия пока совершает лишь первые шаги в этой сфере (на Россию приходится менее 1 процента мировой ветрогенерации). Совокупная мощность ветряков оценивается в 1,4 гигаватта (для сравнения: вся энергогенерация в стране — 247 гигаватт). Однако это соотношение очень скоро будет меняться.

Сейчас в России реализуется несколько крупных проектов ВЭС мощностью более 660 мегаватт. В ближайшие годы будет создано еще 24 проекта в этой сфере.

В России действует программа поддержки ВИЭ, одна из задач которой — увеличить долю вырабатываемой зеленой электроэнергии. Программа предполагает выделение квот на строительство электростанций, дающих 5,5 гигаватта возобновляемой энергии, средства предоставляют в обмен на энергомощности, единственное условие участия- — оборудование должно на 65 процентов состоять из российских материалов.

Среди самых перспективных регионов для ветрогенерации — Мурманская, Архангельская, Ростовская и Ульяновская области, прибрежные зоны Финского залива, Краснодарский и Ставропольский края. До 2023 года на новые станции собираются потратить около 30 миллиардов рублей.

Самая крупная ветроэлектростанция в России — Кочубеевская ВЭС в Ставропольском крае, построенная «Росатомом». Она состоит из 84 ветроустановок мощностью 2,5 мегаватта каждая и имеет установленную мощность 210 мегаватт. Сейчас на юге России действуют пять ветроэнергетических станций госкорпорации общей установленной мощностью 660 мегаватт. Ветропарки есть также в Ростовской области, готовятся проекты по строительству ВЭС в Мурманской области и Ставропольском крае — ими будет заниматься «Энел Россия» («дочка» итальянской Enel). К 2025 году общая мощность российских ВЭС, по данным Ассоциации развития возобновляемой энергетики (АРВЭ), превысит 3,4 гигаватта.

Энергией ветра могут пользоваться не только большие компании, но и простые россияне. Ветряк для личного пользования гораздо компактнее промышленных монстров. Личные ветряки ставят жители не только отдаленных районов, но и Центральной России. Особенно актуален этот вопрос для поселков, где сети изношены и часто случаются перебои с подачей энергии. Бензиновые и дизельные генераторы не всегда удобны и нуждаются в топливе. Самые дешевые ветряки производят в Китае — генератор мощностью в 1 киловатт обойдется в 20 тысяч рублей, а устройство мощностью 5 киловатт — в 300 тысяч. Ветрогенератор европейского и российского производства стоит до миллиона рублей.

Солнечная сторона

Не меньше перспектив развития в России и у солнечной энергетики, ее доля пока тоже не очень велика (1,8 мегаватта), но рынок активно развивается. По прогнозам аналитиков Research and Markets. com, к 2026 году объем мирового рынка будет расти на 20,5 процента ежегодно и составит 223,3 миллиарда долларов. По оценке Международного энергетического агентства, к 2040 году солнечная генерация во всем мире увеличится на 43 процента. Это позволит уменьшить объем выброса парниковых газов и сократить негативные эффекты изменения климата на планете. Кроме того, бурное развитие солнечной энергетики приведет к падению цены на электричество для потребителей.

В России доля солнечной энергетики пока остается скромной — всего 0,72 процента от общей выработки электричества. Но ситуация быстро меняется. В 2019 году солнечные электростанции (СЭС) выработали 1,3 миллиарда киловатт-часов электроэнергии — почти на 70 процентов больше, чем в 2018 году, а по итогам 2020 года эта цифра вплотную приблизилась к 2 миллиардам киловатт-часов. Наибольшую долю в балансе энергосистемы солнечные станции (СЭС) занимают на юге страны, где на них приходится 2,77 процента установленной мощности.

Сейчас крупных солнечных электростанций в России достаточно, чтобы обеспечивать энергией небольшие города. К примеру, электроэнергии, вырабатываемой Фунтовской СЭС, хватает более чем на 30 тысяч домохозяйств в Астраханской области. Кроме того, годовая выработка этой станции позволяет избежать 58 тысяч тонн выбросов углекислого газа и экономить 33 миллиона кубометров природного газа. При этом солнечную энергетику можно развивать практически на всей территории страны, но наибольшим солнечным потенциалом обладают Приморье, Забайкалье, южные области Сибири и Европейской части России.

На удаленных от центра страны территориях солнечная генерация жизненно необходима для надежного обеспечения электричеством. Сегодня за энергоснабжение в изолированных районах Сибири и Дальнего Востока отвечают преимущественно дизельные электростанции — это дорого и неудобно. Причем солнечные панели можно размещать не только на суше, но и на воде. Показательный пример — первая в стране плавучая СЭС в Амурской области. Прогнозная годовая выработка солнечной электростанции составляет 53,5 тысячи киловатт-часов.

Потребителей солнечной энергии в России можно разделить на три категории: это крупные компании — в частности, нефтегазовые и горнодобывающие; малые и средние предприятия — например, торговые компании и гостиницы; и домохозяйства. СЭС могут быть сетевыми (работают параллельно с центральной электросетью), автономными (не имеют подключения к сети и работают с системами накопления энергии) и гибридными (работают вместе с центральной сетью, но имеют хотя бы одну аккумуляторную батарею и выступают в качестве резерва при отключении электричества). Для частного пользования в России ставят небольшие СЭС мощностью до одного мегаватта.

Но установка собственной станции — дорогое удовольствие. Микро-СЭС на 3-5 киловатт обойдется в среднем в 180-300 тысяч рублей. Для многих потенциальных пользователей высокая стоимость становится проблемой, даже если они осознают, что в ближайшие 30-40 лет электроэнергия будет для них практически бесплатной. Однако с развитием технологий цена оборудования будет снижаться. По словам Ланшиной, энергия солнца скоро станет дешевле других видов топлива. За последние десять лет стоимость газовой генерации снизилась приблизительно на 30 процентов, в то время как стоимость ветрогенерации — в три раза, а стоимость солнечной — в десять.

Одно из перспективных направлений в области солнечной генерации — перовскиты, полупроводники с особой кристаллической структурой. Если КПД обычной солнечной батареи составляет в среднем 22 процента (количество солнечного света, который преобразуется в энергию), то благодаря перовскитам он может превысить 27 процентов. В России ведутся исследования методов внедрения технологии: ученые МГУ улучшили метод сборки перовскитных солнечных батарей с помощью лазерной резки. В перспективе это может еще больше снизить их себестоимость.

стоит собственная солнечная электростанция

Спрос на солнечную генерацию в России усиливается на фоне растущих тарифов на электроэнергию, отмечают авторы исследования «Несубсидируемый рынок солнечной энергетики в России: в ожидании взрывного роста». Сейчас стоимость производства киловатта энергии на микро-СЭС составляет 4-5 рублей, при том что полный тариф на сетевую электроэнергию для рядовых потребителей составляет в среднем 4,17 рубля, а для малого и среднего бизнеса — 5,32 рубля. Причем в некоторых регионах предприятия платят за свет почти вдвое больше, так что установка мини-СЭС поможет им существенно сэкономить. Постепенно в России меняются и потребительские предпочтения: граждан все больше беспокоят проблемы изменения климата, многим важно, чтобы хотя бы часть энергии шла от ВИЭ.

«Пока греем улицу»

Собственные мини-электростанции оказываются очень кстати, когда в городе бывают проблемы с электричеством. Владелица питомника среднеазиатской овчарки и вельш-корги-пемброк Валентина Кривилева из Ижевска поставила на своем участке комбинированную установку с ветрогенератором и солнечными панелями.

Питомник находится на одном участке с частным домом. Основное электроснабжение дома и вольеров идет через местную подстанцию, но отключения случаются часто, иногда света может не быть по 12 часов, поэтому заводчица решила поставить гибридную установку. Конструкция соединяет в себе ветрогенератор мощностью 1,5 киловатта, четыре солнечные панели с генерацией 800 ватт, аккумуляторными батареями по 400 ампер и инвертором. Работой всей установки управляет специальный процессор. «В течение семи лет нареканий нет. Установка обеспечивает все необходимое: питание скважины, водоснабжения, электропитание газового котла, анаэробный септик, питание ворот гаража, интернет, холодильник и телевизор», — перечислила Кривилева.

В основном питомник все равно зависит от городской электросети, но дополнительные мощности очень выручают, когда отключается свет. «В экстремальной ситуации система обеспечивает полную автономность, есть вода, электроэнергия, газ», — объяснила она и добавила, что с появлением установки жизнь стала комфортнее: «Мы спокойны, что вода, газ и тепло у нас всегда есть». Главный плюс такой системы — независимость от внешних факторов и экономия денег. Например, летом Кривилева вообще не пользуется центральным энергоснабжением. «В летнее время я все поливы осуществляю за счет этой энергии (выработанной на установке)», — уточняет хозяйка.

Читайте также:  классы энергоэффективности систем вентиляции

Но есть и минусы. «Случается, что энергии генерируется слишком много, накопить ее в аккумуляторах уже нельзя, а использовать некуда. В этом случае энергия сбрасывается в нагревательные тэны, которые отапливают окружающую среду», — рассказала Кривилева. В перспективе она хотела бы отапливать за этот счет теплицы. «Если бы была возможность, как в других странах, продавать избытки электроэнергии в городскую сеть, то эффективность системы выросла бы на 60-70 процентов. А так — пока греем улицу», — отмечает владелица питомника. Она считает, что со временем многие россияне смогут оборудовать в своих хозяйствах подобные станции, и это позитивно отразится на экологии. Вопрос только в том, куда девать избытки энергии.

Бурные потоки

Необходимость энергоперехода очевидна российским властям. «Мировая экономика нацелена на постепенный переход к низкоуглеродной энергетике. И это уже новая реальность. Нужно готовиться к поэтапному сокращению использования традиционных видов топлива — нефти, газа, угля. Повышать энергоэффективность. Развивать альтернативную энергетику. Строить соответствующую инфраструктуру», — говорил премьер-министр Михаил Мишустин. К середине декабря 2021 года будет разработан план по адаптации экономики к новым реалиям вплоть до 2030 года. Одним из ключевых направлений должно стать развитие тех сфер, где у страны есть преимущества: использование водорода, углехимия, климатические проекты в лесном хозяйстве, атомная и гидроэнергетика.

В настоящее время в России работает более 170 гидроэлектростанций (ГЭС). По установленной мощности они занимают второе место после тепловых электростанций, но доля их генерации в энергобалансе страны составляет 17,6 процента, и по этому показателю они пока уступают газовым, угольным и атомным станциям. При этом энергия, получаемая от ГЭС, — одна из самых дешевых: один киловатт стоит около 0,15 рубля. Крупнейшая в стране ГЭС — Саяно-Шушенская — находится в Сибири и обеспечивает три процента энергопотребления всей России. В 2020 году она произвела рекордные 26,6 миллиарда киловатт-часов: этого хватит, чтобы питать электричеством весь Санкт-Петербург.

На территории России сосредоточено около девяти процентов мировых запасов гидроэнергии. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место в мире, опережая США, Бразилию, Канаду и уступая только Китаю. Однако степень освоенности гидроэнергетического потенциала нашей страны составляет всего около 20 процентов. Развитие гидроэнергетики тормозится по нескольким причинам. Во-первых, себестоимость строительства ГЭС очень высока и превышает вложения в солнечные и ветростанции, а в некоторых случаях может оказаться даже дороже строительства АЭС. Во-вторых, большинство мест, подходящих для возведения ГЭС, уже использовано. А установка ГЭС в труднодоступных и потенциально опасных местах, например, в сейсмически рискованной зоне, взвинчивает и без того большие затраты. К тому же в районах, где есть ГЭС, меняется микроклимат, и близлежащие территории могут превратиться в болота.

гидропотенциала использует Россия для генерации электроэнергии

Выходом могут стать мини-ГЭС мощностью до 30 мегаватт. «Малые и средние ГЭС не так сильно воздействуют на экологию, они могут быть размещены на менее крупных реках и требуют меньше инвестиций», — объясняет аналитик Института комплексных стратегических исследований Наталья Чуркина.

До конца 2024 года в России планируют ввести в эксплуатацию несколько малых ГЭС суммарной мощностью 168 мегаватт. Например, в Чечне начали строить Башенную малую гидроэлектростанцию (МГЭС) мощностью в 10 мегаватт на реке Аргун, главная цель проекта — улучшить энергоснабжение в горных районах. Предполагается, что в год станция будет вырабатывать 45 миллионов киловатт-часов чистой энергии. Проект обошелся почти в два миллиарда рублей, запустить МГЭС должны в 2024 году. Еще один перспективный проект — мини-ГЭС в Дагестане, которая обойдется в 1,5 миллиарда рублей, запуск должен состояться к концу 2024 года. В 2028 году в республике также появится Могохская ГЭС мощностью 49,8 мегаватта, окончательная стоимость станции пока не определена.

Сила Земли

Еще одним возобновляемым источником энергии для России могут стать приливы и отливы. Первая и пока единственная российская приливная электростанция — Кислогубская ПЭС — была построена во времена СССР. Проект реализован в 1968 году на берегу Баренцева моря, но сейчас ПЭС законсервирована. Похожую станцию задумали реанимировать на Камчатке. Цель — сделать Пенжинскую ПЭС одним из крупнейших в мире источников для производства водорода. Ответственность за разработку и финансирование проекта взяла на себя компания «Н2 Чистая энергетика».

ПЭС — это плотина, которую возводят в морских заливах или в устьях впадающих в них рек. После перекрытия водоема образуется бассейн, в котором уровень воды колеблется в зависимости от высоты прилива. В водопропускных отверстиях плотины устанавливаются турбины с генераторами, работающие в обе стороны под действием напора воды. Главные минусы — высокая стоимость строительства и непостоянная подача энергии.

В 1970-е годы стоимость строительства станции оценивалась более чем в 200 миллиардов долларов, а мощность ПЭС могла составить до 100 гигаватт, что соответствует примерно 40 процентам общего объема производства энергии в России. Проект Пенжинской ПЭС до сих пор не был реализован из-за высокой стоимости и невостребованности дополнительных энергомощностей у местных потребителей. При этом Пенжинская губа — одно из самых перспективных мест в мире для строительства приливной электростанции. «Развитие безуглеродной экономики, наметившийся в мире тренд на декарбонизацию, использование водородных технологий дают возможность раскрыть потенциал этого проекта», — отмечает генеральный директор «Н2 Чистая энергетика» Алексей Каплун. Он уверен, что в будущем электростанция может стать одним из крупнейших источников производства водорода в мире, но сколько денег понадобится на строительство — пока неясно.

Еще одно перспективное направление для России — геотермальная энергетика. Потенциал геотермальной энергии превышает аналогичный показатель ископаемого топлива в 10 тысяч раз. Через поверхность Земли проходит поток тепла, эквивалентный сжиганию 46 миллиардов тонн угля. Если в ближайшее время «приватизировать» хотя бы 1 процент этой энергии, отпадет необходимость в строительстве сотен обычных мощных электростанций. Крупнейшая ГеоЭС — Мутновская — расположена на Камчатке, ее мощность — 50 мегаватт. Сейчас на Камчатке ВИЭ составляет около трети от общей генерации — один из рекордных показателей по стране. Зеленые источники энергии в регионе планируют развивать. «К сожалению, все используемые технологии относятся к советском периоду, — подтвердил губернатор Камчатского края Владимир Солодов. — Однако ряд ГеоЭС будет расширен и модернизирован».

Кроме того, неисчерпаемым источником чистой энергии могут стать волны: наибольший потенциал ученые видят в северной части Тихого океана: здесь можно получать количество энергии, сопоставимое с объемами крупнейших электростанций мира. Однако подобные проекты сложно осваивать с точки зрения инфраструктуры и элементарной географической доступности.

Россия относится к числу стран, которые хотели бы заниматься волновой энергетикой, но сталкиваются с рядом сложностей, объясняет старший научный сотрудник кафедры океанологии географического факультета МГУ Станислав Мысленков. В нашей стране есть несколько экспериментальных волновых генераторов, однако успешно работающих промышленных установок пока не существует. Но будущее у этой технологии определенно многообещающее. По мнению экспертов, волновая энергия Мирового океана может удовлетворить не менее 20 процентов энергетических потребностей человечества.

Мировой тренд на декарбонизацию бросил России вызов и ускорил отказ от традиционных нефти и газа. На гигантской территории нашей страны можно развивать практически любые виды ВИЭ: неисчерпаемый потенциал есть у энергии солнца, ветра, геотермальных источников. Изменилось и мнение граждан по вопросам экологии: все больше россиян хотят использовать энергию природы. Так что в обозримом будущем собственные мини-электростанции уже не будут казаться чем-то удивительным, они станут обыденностью. В глобальном масштабе и при правильном подходе к развитию и внедрению технологий Россия может стать мировым лидером в сфере возобновляемых источников энергии.

Характеристики электростанций

Все электрические станции объединены и образуют Единую энергетическую группу, которую создали с целью более эффективного использования их мощностей, чтобы непрерывно снабжать потребителей электроэнергией. Основным элементом в устройстве считается электрогенератор, который выполняет определенные функции:

Гэс аэ Энергоэффективность гэса

  • Гарантирует непрерывную работу одновременно с другими энергосистемами и обеспечивает энергией собственные автономные нагрузки.
  • Обеспечивает быстрое реагирование на наличие или отсутствие нагрузки, которая соответствует его номинальному значению. Производит запуск электродвигателя, обеспечивающего функционирование всей станции.
  • Совместно со специальным оборудованием выполняет защитные функции.

Каждый генератор отличается формами, размерами и источником энергии, который вращает вал. Кроме него, в станцию входят: турбины, котлы, трансформаторы, распределительное оборудование, технические средства коммутации, автоматика, релейная защита. Сейчас большое внимание уделяется выпуску более компактных установок.

Они вырабатывают электроэнергию, которая питает не только различные объекты, но и целые поселения, находящиеся на удаленном расстоянии от электрических линий. В основном они используются на полярных станциях и предприятиях, добывающих полезные ископаемые.

Основные виды

Классификация электростанций в первую очередь проводится по типу энергоносителей. К ним относятся уголь, природный газ, вода рек, ядерное топливо, дизельное горючее, бензин и т. Список основных станций:

Гэс аэ Энергоэффективность гэса

  • ТЭС — расшифровка аббревиатуры: тепловая электрическая станция. Для ее работы используется природное топливо, а она может быть конденсационной (КЭС) или теплофикационной (ТЭЦ).
  • ГЭС — гидравлическая электростанция, которая работает за счет воды рек, падающей с высоты. Существует ее разновидность — ГАЭС (гидроаккумулирующая).
  • АЭС — атомные станции, энергоносителем которых является ядерное топливо.
  • ДЭС — стационарные или передвижные электростанции, работающие на дизельном топливе. Обычно это станции малой мощности, которые используются в строительстве и частном секторе, где нет линий электропередач.

Существуют еще солнечные, ветровые, приливные и геотермальные источники электропитания, которые слабо применяются в нашей стране. У них есть ряд недостатков природного характера, и они представляют собой альтернативные виды выработки электроэнергии.

Тепловые и гидравлические

Тепловые электростанции России создают около 70% от всей электроэнергии. Для их функционирования используется мазут, уголь, газ, а в некоторых регионах — торф и сланцы. На теплоэлектроцентралях кроме электрической производится тепловая энергия.

Читайте также:  энергоэффективность во владимире

Гэс аэ Энергоэффективность гэса

Одним из основных элементов станции является турбина, которая вращается за счет вырабатываемого пара. Преимуществом ТЭС считается то, что ее оборудование можно разместить практически везде, где есть природные энергоносители. Кроме того, на их работу практически не влияют природные факторы.

Но при этом применяемое топливо не возобновляется, то есть его ресурсы могут закончиться, а само оборудование засоряет окружающую среду. В России тепловые станции не оборудованы эффективными системами для очистки от вредных и токсичных веществ.

Гэс аэ Энергоэффективность гэса

Газовое оборудование считается более экологичным, но идущие к нему трубы также наносят вред природе. Станции, которые находятся в центральном регионе страны работают на природном газе и мазуте, а в восточных районах — на угле. Поэтому их размещение осуществляется ближе к месторождениям природного топлива.

По своей значимости гидравлические станции расположились на втором месте после ТЭС. Их основное отличие — это использование энергии воды, которая относится к возобновляемым ресурсам. Если смотреть по карте России, то можно заметить, что самые мощные ГЭС находятся в Сибири на Енисее и Ангаре. Список крупных электростанций:

  • Саяно-Шушенская — обладает мощностью 6,4 тыс. мВт.
  • Красноярская — 6 тыс. мВт.
  • Братская — 4,5 тыс. мВт.
  • Усть-Илимская — 3,84 тыс. мВт.

Схема принципа действия установок довольно проста. Падающая вода приводит в движение турбины, которые вращают генераторы, и начинает вырабатываться электроэнергия. Стоимость электричества, производимого ГЭС, считается самой дешевой, и она в 5—6 раз меньше, чем на ТЭС. Кроме того, чтобы управлять гидравлической станцией, требуется меньшее количество сотрудников.

Гэс аэ Энергоэффективность гэса

Большую разницу составляет время запуска установки. Если для ГЭС этот параметр составляет 3—5 минут, то у ТЭС он будет длиться несколько часов. С другой стороны, гидравлическая установка функционирует на полную мощность только при большом подъеме уровня воды.

Сейчас большое внимание уделяется строительству гидроаккумулирующих станций, которые отличаются от традиционных установок возможностью перемещения одинакового количества воды между нижним и верхним бассейнами. В ночное время, когда есть излишки электроэнергии, вода подается снизу вверх, а в дневное — наоборот.

Атомные и дизельные

По количеству выпускаемой энергии атомные электростанции располагаются на третьем месте. Их доля в энергетике России составляет всего 10%. В Соединенных Штатах это значение равно 20%, а самый высокий показатель во Франции — более 75%.

После катастрофы на АЭС в Чернобыле была сокращена программа по строительству и развитию ядерных электростанций. Наиболее известные объекты в России:

Гэс аэ Энергоэффективность гэса

  • Ленинградский;
  • Курский;
  • Смоленский;
  • Белоярский и др.

Сейчас наиболее популярны атомные теплоэлектроцентрали, назначение которых — производство электрической энергии и тепла. Станция такого типа функционирует в поселке Билибино на Чукотке. Кроме того, одним из последних направлений считается создание АСТ — атомных станций теплоснабжения, в которых происходит превращение ядерного энергоносителя в тепловую энергию.

Такое оборудование успешно работает в Нижнем Новгороде и Воронеже. При правильной эксплуатации АЭС является самой экологичной установкой, а именно:

Гэс аэ Энергоэффективность гэса

  • несущественные выбросы в атмосферу;
  • кислород практически не поглощается;
  • не создается парниковый эффект.

Если рассматривать принцип работы атомной электростанции, то следует учитывать катастрофические последствия после аварий. Отработанный энергоноситель также требует специального захоронения в ядерных могильниках.

Мобильные дизельные электростанции стали неотъемлемой частью для снабжения электроэнергией отдаленных районов и объектов строительства. Помимо этого, их зачастую используют как аварийные или резервные источники.

Основным элементом оборудования считается генератор, который вращается от двигателя внутреннего сгорания. Стационарные установки могут обладать мощностью до 5 тыс. кВт, а передвижные — не более 1 тыс. кВт.

Одним из их достоинств считаются компактные размеры, поэтому их можно размещать в небольших помещениях. К минусам можно отнести зависимость от наличия топлива, способов его доставки и хранения.

Преимущества и недостатки

Любая электрическая станция обладает как определенными достоинствами, так и некоторыми недостатками. Причины такой ситуации могут зависеть от технологических процессов, человеческого фактора и природных явлений.

Таблица. Плюсы и минусы ТЭС, ГЭС, АЭС.

Гэс аэ Энергоэффективность гэса

Вид электростанции

Достоинства

Недостатки

Тепловая

1. Небольшая цена на энергоноситель. Малые капитальные вложения. Не имеют конкретной привязки к какому-нибудь району. Низкая себестоимость электроэнергии. Все оборудование занимает небольшую площадь. Сильное загрязнение окружающей среды. Большие эксплуатационные расходы. Гидравлическая

1. Отсутствует необходимость добычи и доставки энергоносителя. Не загрязняет близлежащие районы. Управление водяными потоками. Высокая надежность функционирования. Легкое техническое обслуживание и небольшая себестоимость электроэнергии. Возможность дополнительно использовать природные ресурсы. Подтопление плодородных земель. Большая занимаемая площадь. Атомная

1. Малое количество вредных выбросов. Небольшой объем энергоносителя. Высокая мощность на выходе. Низкие издержки для получения электроэнергии. Вероятность опасного облучения. Выходная мощность не регулируется. Катастрофические последствия при аварии. Высокие капитальные вложения.

Нетрадиционные электростанции (солнечные, геотермальные, приливные, ветровые и др. ) в России используются в небольшом количестве.

Несмотря на недостатки, которые в основном связаны с непостоянством природных явлений, высокой стоимостью и малой выходной мощностью, за альтернативными установками — интересное и перспективное будущее.

Энергетика Украи́ны — важная отрасль промышленности Украины, совокупность подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. Она базируется на использовании традиционных видов тепловых и гидроэлектростанций, с отклонением от среднемировой статистики в сторону большего использования АЭС.

Большая часть существующих объектов энергетики была создана усилиями специалистов-энергетиков УССР, и в настоящее время нуждается в модернизации.

Общая характеристикаПравить

В хозяйственном комплексе Украины играет очень важную роль электроэнергетика. Приблизительно половина всего первичного топлива (уголь, нефть, газ, уран), которое добывает или импортирует Украина, а также энергия отдельных рек используется для производства электро- и теплоэнергии. Развитие электроэнергетики стимулирует создание новых промышленных узлов. Отдельные отрасли промышленности территориально приближены к источникам дешёвой электроэнергии, например, цветная металлургия. Электроэнергия на Украине вырабатывается преимущественно на ТЭС, ГЭС, ГАЭС и АЭС.

Сегменты электроэнергетики Украины

Установленные мощности на электростанциях Украины — 42,8 ГВт.

Основные ТЭС расположены на Донбассе. Самые мощные из них: Углегорская ТЭС (3,6 млн кВт), Старобешевская (~2 млн кВт), Луганская и Кураховская (по ~1,5 млн кВт). Запорожская АЭС (г. Энергодар) — самая мощная среди атомных электростанций Европы. На Днепре работают ГЭС суммарной мощностью 2,5 млн кВт. Возле Киева расположены три мощных станции: Трипольская ГРЭС (1,8 млн кВт), Киевская ГЭС и ГАЭС. Новый мощный район формируется в западной части страны, состоящий из ТЭС (в Добротворе и Бурштыне) и АЭС (Ровенская и Хмельницкая). В западном регионе страны также расположена Днестровская ГЭС (0,7 млн кВт). Южные регионы Украины хуже всего обеспечены электроэнергией собственного производства. Крупнейшие электростанции на юге страны: Южно-Украинская АЭС (3 млн кВт) и Ладыжинская ГРЭС (1,8 млн кВт).

Почти 80 % украинской тепловой электрогенерации контролируется компанией ДТЭК Рината Ахметова. На начало 2012 года в собственности у ДТЭК находятся Востокэнерго, 72,9 % акций Днепроэнерго, 70,91 % акций Западэнерго, 72,39 % акций Киевэнерго. Таким образом, ДТЭК контролирует около 18200 МВт установленных электрогенерирующих мощностей, что составляет 53,9 % мощностей всех ТЭС и ТЭЦ Украины, выработавших 50,1 млрд кВт·ч электроэнергии (29 % от совокупного объёма производства электроэнергии на Украине, включая неприватизированные АЭС, ГЭС, ГАЭС). Через приобретённые энергосбытовые компании ДТЭК (Донецкоблэнерго, Днепрооблэнерго, Крымэнерго и другие) реализуется около 62,8 млрд кВт·ч или 43 % электроэнергии (в том числе для нужд промышленности — более 50 %).

В 2011 году, по данным Министерства энергетики и угольной промышленности Украины, производство первичных энергоресурсов на Украине составило:
уголь — 81,99 млн т (в том числе 56,97 млн т — энергетические угли,
25,02 млн т — коксующиеся),
природный газ — 20,14 млрд м³,
нефть и газовый конденсат — 3,33 млн т.

В 2011 году объем переработки нефти и газового конденсата на НПЗ Украины и Шебелинском ГПЗ снизился до 9,05 млн т (в 2010 году был равен 11,10 млн т); объём сбыта природного газа компанией НАК «Нафтогаз України» всем категориям украинских потребителей составил 44,04 млрд м³.

  • природный газ — 16 %
  • уголь и торф — 8 %
  • атомная энергия — 64 %
  • нефть и нефтепродукты — 3 %
  • другие виды энергоресурсов — 0,5 %

Данные в этой статье приведены по состоянию на 2014-2015 годы. Вы можете помочь, обновив информацию в статье.

  • в 2001 году — 200 млрд кВт·ч;
  • в 2004 году — 182,2 млрд кВт·ч;
  • в 2008 году — 191,7 млрд кВт·ч;
  • в 2011 году — 193,9 млрд кВт·ч.

Газ в млрд м³, уголь в млн тонн:

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения идёт дискуссия на тему: Мощность большинства приводимых в статье тепловых электростанций указана неверно (занижена в несколько раз), по всей видимости целенаправленно.

Факторы, ограничивающие развитие электроэнергетики

Одним из основных факторов, ограничивающих развитие электроэнергетики на Украине, является экологический. Выбросы от работы этой отрасли составляют около 30 % всех твёрдых частиц, что поступают в атмосферу вследствие хозяйственной деятельности человека. По этому показателю электростанции сравнялись с предприятиями металлургии, и опережают все остальные отрасли промышленности. Кроме того, энергетика производит до 63 % серного ангидрида и более 53 % окиси азота, поступающих в воздух от стационарных источников загрязнения; они являются основным источником кислотных дождей на Украине.

Негативное влияние на окружающую среду оказало строительство гидроэлектростанций. Строительство ГЭС на Днепре (кроме Днепрогэса, 1932 год) привело к затоплению значительных территорий. Водохранилища подняли уровень грунтовых вод, что стало причиной интенсивного разрушения крутых берегов.

Важной для Украины является ядерная безопасность. Катастрофа на Чернобыльской АЭС (1986) превратила значительную часть страны в зону экологического бедствия; наиболее загрязнёнными оказались Киевская, Житомирская, Винницкая, Ровенская, Черниговская и Черкасская области. Помимо почвы радиационному загрязнению подверглись лесные и водные ресурсы, немаловажные для жизнедеятельности населения Украины.

Оцените статью
GISEE.ru - Официальный сайт
Добавить комментарий