энергоэффективность электростанций различных типов

энергоэффективность электростанций различных типов Энергоэффективность

В настоящее время многие страны мира начинают все более активно переходить к ресурсосберегающему пути развития. В последние годы структура производства энергии в мире меняется в сторону снижения доли невозобновляемой энергетики и увеличения доли возобновляемых источников энергии (ВИЭ). Наиболее динамично развивающимися отраслями ВИЭ являются солнечная и ветровая энергетика.

Традиционно выделяют следующие причины, способствующие развитию ВИЭ:

  • более равномерное распределение по территории планеты и как следствие их большая доступность;
  • практически полное отсутствие выбросов загрязняющих веществ в окружающую среду в процессе эксплуатации (не для всех видов ВИЭ);
  • исчерпаемость ископаемых ресурсов и неограниченность ресурсов для некоторых видов ВИЭ (ветер и  солнце);
  • существенное усовершенствование технологий производства энергии (в особенности для солнечной и ветровой энергетики).

Развитию ВИЭ также способствует то, что в настоящее время более чем в 50-ти странах мира приняты (в России частично) и действуют законы и меры государственного регулирования для поддержки возобновляемой энергетики. Кроме того, немаловажным фактором развития ВИЭ является снижение капитальных вложений в строительство энергообъектов на их основе.

энергоэффективность электростанций различных типов

Наиболее значительное снижение удельных капитальных вложений в строительство приходится на такие энергообъекты, как ветровые электростанции (ВЭС) и солнечные фотоэлектрические электростанции (СФЭС). Для таких энергообъектов на основе ВИЭ, как гидроэлектростанции (ГЭС), малые гидроэлектростанции (МГЭС), геотермальные электростанции (ГеоЭС) и биоэлектростанции (БиоТЭС), значения капитальных вложений снизились, но незначительно. Наряду с этим в последние годы также наблюдается тенденция снижения эксплуатационных (текущих) затрат и приведённой стоимости электроэнергии (Levelized Cost of Energy – LCOE).

В настоящее время энергообъекты на основе ВИЭ при определённых условиях являются экономически вполне конкурентоспособными.

Причины такого интенсивного развития ВИЭ, в особенности ветровой и солнечной энергетики, заключаются ещё и в том, что в  мире изменился подход к  оценке эффективности энергетических объектов в сторону многокритериальности, наметилась тенденция на децентрализацию систем энергоснабжения и на развитие региональной энергетики, в особенности на основе ВИЭ.

энергоэффективность электростанций различных типов

В зарубежной практике наряду с  экономическими показателями для оценки эффективности энергообъектов используют энергетические и экологические показатели.

В качестве энергетических показателей принимаются: срок энергетической окупаемости (Energy payback time (EPBT)) и коэффициент энергетической эффективности (Energy return on investment (EROI)).

Срок энергетической окупаемости показывает время, в течение которого рассматриваемый энергообъект произведённой энергией компенсирует затраты энергии на его создание, эксплуатацию и снятие с эксплуатации.

Коэффициент энергетической эффективности представляет собой отношение произведённой энергии на этапе эксплуатации к  затраченной энергии в течение жизненного цикла энергообъекта, который состоит из трёх основных этапов: строительство, эксплуатация и снятие с эксплуатации.

В качестве основных экологических показателей принимаются:

  • потенциал глобального потепления (Global warming potential (GWP));
  • потенциал окисления (Acidification potential (AP));
  • потенциал эвтрофикации (Eutrophication potential (EP)).

Потенциал глобального потепления – показатель, определяющий степень воздействия различных парниковых газов на глобальное потепление.

Потенциал окисления – показатель, характеризующий воздействие на окружающую среду выбросов загрязняющих веществ, способных образовывать кислоты.

Потенциал эвтрофикации – показатель, характеризующий ухудшение качества воды в результате накопления в воде биогенных элементов.

Значения данных показателей определяются на основе следующих загрязняющих веществ: потенциал глобального потепления рассчитывается на основе СО, СO2 и СH4 и измеряется в кгСO2экв, потенциал окисления – SO2, NOx и HCl и измеряется в кгSO2экв, потенциал эвтрофикации – PO4, NH3 и NOх и измеряется в кгPO4экв. Каждый из типов загрязняющих веществ имеет свой удельный вес.

энергоэффективность электростанций различных типов

Результаты многочисленных исследований показывают: энергообъекты на основе возобновляемых источников энергии, в особенности СФЭС и ВЭС, как правило, энергетически и  экологически эффективнее, чем объекты невозобновляемой энергетики.

Энергетическая эффективность энергообъектов на основе ВИЭ (особенно ветровой и солнечной энергетики) за последние 5–10 лет значительно повысилась.

энергоэффективность электростанций различных типов

энергоэффективность электростанций различных типов

В  таблице приведены оценки сроков энергетической окупаемости, полученные разными авторами для наземных ВЭС и СФЭС различного типа и ГЭС разной мощности. Из них следует, что срок энергетической окупаемости наземных ВЭС составляет от 6,6 до 8,5 месяцев, СФЭС 2,5–3,8 года и МГЭС 1,28–2,71 года, соответственно.

Снижение сроков энергетической окупаемости энергообъектов на основе ВИЭ связано с тем, что в мире за последние 15–20 лет произошло существенное развитие и  усовершенствование технологий производства энергетического оборудования и элементов энергообъектов.

Наиболее наглядно данная тенденция прослеживается для ВЭС и СФЭС, для которых основная доля затрат энергии в течение жизненного цикла приходится на изготовление основного энергетического оборудования (ветротурбин и  фотоэлектропреобразователей).

Так, например, доля энергозатрат на основное энергетическое оборудование ВЭС составляет порядка 70–85%, а для СФЭС 80–90%. Если рассмотреть ВЭС и СФЭС в составе ветровых и солнечных парков, то удельный вес составляющих затрат энергии в этом случае будет немного отличаться от приведённых значений, поскольку нужно будет учесть затраты энергии на изготовление кабелей.

Читайте также:  Canon i-SENSYS LBP6030B

Увеличение экономической конкурентоспособности энергообъектов на основе ВИЭ, а также их более высокая энергетическая и экологическая эффективность по сравнению с невозобновляемыми источниками способствуют всё более интенсивному развитию энергообъектов на основе ВИЭ в мире.

энергоэффективность электростанций различных типов

Согласно прогнозам, установленная мощность энергообъектов на основе ВИЭ, в особенности ветровой и солнечной энергетики в мире, как в краткосрочной, так и в долгосрочной перспективе будет продолжать возрастать. Также согласно прогнозам, в мире будет увеличиваться и доля ВИЭ в общем производстве энергии.

оценки энергетической и  экологической эффективности жизненных циклов энергообъектов. Эти оценки показывают, что энергообъекты на основе ВИЭ (особенно ВЭС и СФЭС) в подавляющем большинстве случаев энергетически и экологически эффективнее, чем невозобновляемые источники энергии.

Выбор наиболее эффективных вариантов энергообъектов в России в настоящее время осуществляется только на основе показателей экономической эффективности. Определение энергетической и экологической эффективности жизненных циклов энергообъектов, в том числе на основе ВИЭ, не производится, что не позволяет произвести комплексную оценку их эффективности.

В России существует большое количество децентрализованных и энергодефицитных регионов и районов со слабой сетевой инфраструктурой, изношенными энергетическими фондами, но с большим потенциалом ветровой, солнечной и других видов возобновляемой энергии, использование которой при всесторонней комплексной оценке может оказаться не только экономически, но и энергетически, и экологически значительно эффективнее, чем использование невозобновляемых источников энергии.

По материалам статьи доктора технических наук, профессор Г. Сидоренко «К вопросу эффективности энергообъектов на основе ВИЭ» в журнале «Энергия: экономика, техника, экология»

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Обострение дефицита энергоресурсов — одна из наиболее актуальных проблем мирового масштаба в среднесрочной перспективе.

Удовлетворить непрерывно увеличивающуюся потребность в электрической энергии на уровне отдельно взятой страны, можно двумя способами: либо, пока позволяют природные ресурсы, наращивать добычу нефти, газа, угля и т. , строить новые объекты электрогенерации, этот путь является заведомо тупиковым в силу ограниченности запасов. Либо сосредоточиться на повышении эффективности использования топливно-энергетических ресурсов, энергосбережении, разработке и повсеместном внедрении ресурсосберегающих технологий. Второй путь представляется более эффективным в долгосрочной перспективе.

Если говорить о российском рынке энергопотребления, то он характеризуется низкой энергоэффективностью. В России газ является самым дешевым и, на сегодняшний день, наиболее широко используемым видом топлива. В структуре потребления первичных энергоносителей в российской экономике доля газа превышает половину. Такой перекос в российском топливном балансе делает реальной угрозу энергетической безопасности страны, так как из-за дешевизны газа практически не развивается производство и потребление других видов топлива — мазута, торфа, угля. А низкая цена на газ не располагает к рачительному использованию этого природного ресурса.

В России имеется большой недоиспользуемый потенциал энергосбережения, экономический эффект от которого, сопоставим с приростом производства всех первичных энергетических ресурсов.

Потенциал энергосбережения

В России о вопросе энергоэффективности и дефиците энергоресурсов начали задумываться лишь недавно, так как в советское время электроэнергия была относительно дешевая и дополнительно субсидировалась. По разным оценкам, на сегодняшний день в России объем неэффективного использования энергоресурсов превышает 30% общего годового объема потребления электроэнергии.

Таким образом, имеется значительный потенциал повышения эффективности, надежности и качества электроснабжения за счет внедрения современных технологий. Потенциал энергосбережения составляет порядка 400 млн тонн условного топлива или 40% текущего потребления электроэнергии.

Из них четвертую часть может сэкономить жилищно-коммунальное хозяйство, третью часть топливно-энергетический комплекс (33%), и почти столько же — энергоемкие отрасли промышленности (32%).

Ожидается, что в 2014–2013 гг. спрос на электроэнергию в России будет расти достаточно высокими темпами — на 2,2% ежегодно, что также обуславливает активизацию программ энергосбережения.

Освещение в потреблении электроэнергии

В России на освещение расходуется около 12% электроэнергии или примерно 115 млрд кВтч, в среднем по миру эта цифра составляет 20%. Суммарная возможная экономия при установке энергосберегающих светильников в России составит 45–50% — это более 50 млрд кВтч.

Читайте также:  смета на пир на энергоэффективность

Расход электроэнергии на освещение парков, скверов, набережных, дворовых участков, декоративное и рекламное освещения принимается в размере 20– 30% от расхода электроэнергии на освещение улиц и площадей. Более 50% электроэнергии, потребляемой системами искусственного освещения, приходится на коммерческие и промышленные здания.

Сокращению потребления электроэнергии способствует установка и использование автоматизированных систем управления. В частности, уличное освещение является одним из целевых секторов для внедрения интеллектуальных энергосберегающих технологий — на него приходится до 40% городских бюджетов на электроэнергию, а smart-технологии могут сэкономить до 30% этих расходов.

Кроме того, фиксируется высокая доля изношенных электросетей, что обуславливает высокую долю потерь электроэнергии (от 5,9% в Белгородской области до 16,5% во Владимирской области). По данным Минэнерго, доля распределительных сетей, вырабатывавших свой нормативный срок, составляет 50%,уже два нормативных срока выработало 7% сетей. Общий износ распределительных сетей достигает 70%.

Согласно прогнозам Минэкономразвития (если оставить прежний технологический уровень), в 2020 году общее количеств электроэнергии, расходуемой в России на освещение, составит порядка 157,8 ТВтч. Однако, этот сценарий не учитывает те обстоятельства, что во многих случаях реальные уровни освещенности являются очень низкими (иногда в 2 раза меньше, чем рекомендуемые международными стандартами для промышленных предприятий, школ, больниц и т. Таким образом, если не предпринимать никаких действий, то потребность в электроэнергии для освещения будет в последующем быстро расти. Кроме того, рост розничного товарооборота, а Россия в ближайшее десятилетие может стать крупнейшим потребительским рынком Европы, также обуславливает рост спроса на электроэнергию.

Государственное регулирование энергетического рынка

На федеральном уровне основным документом в сфере энергосбережения является Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты Российской Федерации» от 23 ноября 2009 года. Закон направлен на создание условий для сохранения невозобновляемых природных ресурсов России. В нем подробно рассмотрены полномочия органов государственной власти и органов местного самоуправления в области энергосбережения и энергетической эффективности, направления государственного регулирования и порядок осуществления государственного контроля в этой области.

Потребителей электроэнергии также пытаются приучить к экономии энергоресурсов. Для более эффективного регулирования энергопотребления среди населения в середине 2013 года Минрегион подготовил проект постановления Белого дома. По нему в 16 регионах РФ ввели социальные нормы потребления электроэнергии, а тарифы свыше нормы электропотребления существенно отличаются от тарифов в рамках соцнормы. При этом социальные нормы потребления призваны не только снизить потребление электроэнергии, в том числе за счет использования энергосберегающих ламп, но и сократить объемы перекрестного субсидирования, при котором большую часть тарифа населения оплачивают крупные промышленные потребители.

Потенциальная емкость российского рынка

По состоянию на 2012 год на рынке существовал спрос на энергосберегающие лампы в объеме 10 млн светоточек, из них 80% приходилось на уличное освещение, 20% — на дорожное освещение.

В рамках федеральной программы «Энергосбережение» на региональном уровне многие муниципалитеты реализуют свои программы по снижению энергопотребления, в том числе, по модернизации установок наружного освещения. С этой целью в региональных муниципалитетах организовываются тендеры на модернизацию уличного освещения.

Учитывая, что государство активно участвует в снижении энергоемкости и повышении энергоэффективности, как в потребительском, так и в промышленном секторах, то следует ожидать высокой бюджетной инвестиционной поддержки, что в свою очередь, должно стимулировать частный бизнес к увеличению интереса к энергосберегающим технологиям.

Бюджетные потребители наружного освещенияКоличество модернизируемых светоточекОбъем средств для реализации энергосберегающих мероприятий в системах освещения, млн руб. Планируемая экономия электроэнергии, млн кВт·ч в год Уличное освещение городов8 000 00048 0002 400 Дорожное освещение автомагистралей и дорог федерального значения2 000 00012 000600 Всего10 000 00060 0003 000

Читайте также:  Показатель энергоэффективности что это

На сегодняшний день, сектор электроэнергетики характеризуется высокой степенью износа основных фондов, это обостряет необходимость комплексной модернизации генерирующих и электросетевых объектов.

Основными мероприятиями по повышению энергетической эффективности и энергосбережения являются:

  • Замена существующих агрегатов на газовых ТЭЦ и ГРЭС на парогазовые и газотурбинные установки.
  • Замена существующих агрегатов на угольных ТЭЦ и ГРЭС на новые энергоэффективные паросиловые установки.
  • Внедрение высокоэффективных кабелей, трансформаторов, синхронных компенсаторов, ограничителей тока.

Любопытно, что в то же время, по данным программ инновационного развития компаний энергетики, существенного повышения эффективности энергопотребления не предполагается. К примеру, ОАО ИНТЕР РАО ЕЭС закладывает снижение удельного расхода топлива на отпуск электроэнергии в 2014–2016 гг. на 2% в год, тепловой энергии — на 0,4% в год.

Солнечная энергетика и энергосбережение

Еще одним действенным способом энергосбережения является замена ископаемого топлива, возобновляемой солнечной, ветряной и гидроэнергией.

В частности, все более актуальным экологически чистым энергетическим решением представляется применение солнечных батарей.

  • Уже на 2014 год запланировано строительство первых крупных электрогенерирующих солнечных объектов. Начата реализация первых пилотных проектов с использованием солнечных батарей и принципов энергосбережения: объекты Олимпиады Сочи-2014 (ГК «Олимпстрой»), программа «умных вокзалов» (ОАО «РЖД»), объекты ОАО «ФСК ЕЭС» и др.
  • В России при участии ОАО «Роснано» начато создание производственной и научно-технологической базы отрасли. Производство поликремния, производство тонкопленочных и кристаллических модулей.
  • Ведется разработка нормативно-правовой базы для поддержки крупной солнечной генерации на оптовом и розничном рынках электроэнергии.

Планируется, что к 2020 году солнечные электростанции будут обеспечивать 1,5 ГВт отечественной электроэнергии.

Потенциал вторичных энергоресурсов

В России имеется большой потенциал возобновляемого, но слабо используемого энергетическим ресурса — биомассы, образованной отходами городских и сельских территорий, сельскохозяйственного производства, отходами лесопользования и торфом.

В таких регионах России, как Московская область, Удмуртская Республика, Владимирская, Ленинградская, Белгородская, Мурманская области, Пермский край, Самарская область, Ставропольский край, Краснодарский край, Омская, Иркутская области, Хабаровский край, уже сегодня реализуются пилотные проекты по созданию биогазовых установок для переработки отходов сельскохозяйственного производства в биогаз, электроэнергию и тепло, с сопутствующим производством удобрений. В 52 регионах ведется работа по подготовке бизнес-планов для реализации подобных проектов. Для дальнейшего развития биоэнергетики необходима разработка комплексной программы, включающая меры по субсидированию данного направления и проработку соответствующей нормативной базы. Без этих мер у биоэнергетики в России нет будущего.

Каждый год выпускается более 773 млн т. отходов, генерируемых российским агропромышленным комплексом. Применяя анаэробную конверсию для их переработки, можно получить около 66 млрд куб. м биогаза и около 112 млн т. высококачественных гранулированных удобрений. Энергетически 66 млрд куб. м биогаза эквивалентны 33 млрд л. бензина/ дизтоплива. Утилизируя биогаз в газогенераторах с КПД 38% можно получить 110 млрд кВтч электроэнергии и 1 млрд ГДж тепла.

Со стороны государства, принципиально важным документом стал Указ Президента Российской Федерации «О некоторых мерах по повышению энергетической и экологической эффективности российской экономики», который предусматривает выделение бюджетных ассигнований на реализацию пилотных проектов в области использования ВИЭ и экологически чистых технологий.

Распоряжение Правительства РФ (январь 2009 г. ) определило основные направления государственной политики в области развития электроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года и установлены целевые показатели использования ВИЭ в сфере электроэнергетики.

Эти показатели предусматривали увеличение доли использования ВИЭ с 0,9% в 2008 году до 2,5% — к 2015-му и до 4,5% к 2020 году, что составляет около 80 млрд кВтч выработки электроэнергии с использованием ВИЭ в 2020 году при 8,5 млрд кВтч в 2011 году. К 2020 г. планируется увеличить долю возобновляемых источников в производстве электроэнергии до 20% с учетом крупных ГЭС.

Юлия ШПОНКИНА, руководитель отдела маркетинговых исследований Intesco Research Group, член Гильдии Маркетологов

Статья опубликована в журнале «Электротехнический рынок», № 3 (57), 2014

Оцените статью
GISEE.ru - Официальный сайт
Добавить комментарий